
L’espace par lui-même et le temps par lui-même sont condamnés à s’effacer en de simples
ombres, et seule une sorte d’union des deux restera indépendante.

– Hermann Minkowski

1 Motivations historiques

La théorie de la relativité restreinte a été inventée par Mileva et Albert Einstein en 1905,
et elle a révolutionné la façon dont nous comprenons le monde. Pourtant, la théorie repose
sur deux principes très simples, formulés bien avant. Le premier est celui de la relativité,
inventé par Galilée en 1632. Le deuxième est le principe selon lequel la vitesse de la lumière
est constante, principe impliqué par la théorie de Maxwell inventée entre 1850 et 1870. Ces
deux principes, à première vue contradictoires, peuvent être naturellement unifiés en une
seule théorie : une théorie qui parle de la structure même de l’espace-temps, la théorie de la
relativité restreinte.

1.1 La relativité de Galilée

Penchons nous d’abord sur la relativité de Galilée. Cette théorie nous dit que la physique
est partout la même.

Figure 1 – Lancers de stylos dans dif-
férents référentiels

Si deux personnes sont d’un côté ou de l’autre de la
Terre, ils pourront reproduire les mêmes expériences
sans que rien ne change. Si nous somme dans un avion
et que nous renversons un verre d’eau, l’eau tombera
de la même manière que si nous étions sur Terre à
l’arrêt. Supposons que nous sommes dans une pièce
isolée, sans fenêtre ni contact avec l’extérieur, mais
avec tous les outils qu’on puisse imaginer pour faire
nos expériences physiques. Alors Galilée nous dit qu’il
nous est impossible de savoir

1. Où nous sommes

2. Dans quelle direction nous regardons

3. À quelle vitesse nous allons

De manière plus concrète, si nous déplaçons l’expé-
rience en même temps que le système de mesure uti-
lisé pour mesurer les résultats de l’expérience, alors les
résultats resteront inchangés. Supposons par exemple
que l’expérience soit de lancer un stylo et de regarder à
quelle distance il atterrit. C’est l’expérience qu’illustre
la figure 1. Une première personne en jaune lance sim-
plement le stylo, depuis le point 0 et sans bouger. Une
deuxième personne en vert court à une vitesse v en
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lançant le stylo. Enfin, une troisième personne en bleu s’avance d’une distance d avant de
lancer le stylo.

Du point de vue de la personne en jaune, tous les stylos atterrissent à une distance
différente. Il n’y a aucun lien entre les résultats des différentes expériences. Pourtant, chaque
personne mesure la même distance entre elle et le stylo. C’est le principe de relativité de
Galilée : si nous changeons notre système de mesure, ici l’endroit d’où on mesure le stylo, de
la même manière que nous changeons l’expérience, ici la manière dont nous lançons le stylo,
alors le résultat ne changera pas.

Dans notre univers en 3 dimensions, un "système de mesure" correspond à un repère
(O, x, y, z) : x, y et z donnent les directions des axes, tandis que O donne l’origine, le point 0.
Déplacer le système de mesure correspond à changer O, tandis que le tourner correspond
à changer les axes x, y, z. Cependant, comme nous pouvons le voir avec la personne en vert
dans la figure 1, la dimension temporelle est aussi importante. Le repère utilisé peut changer
avec le temps. Notre "système de mesure" correspond donc à un référentiel R(x, y, z, t), c’est à
dire un ensemble de repères qui peuvent changer avec le temps.

Tout objet 1 possède un référentiel attaché, appelé le référentiel propre. Mon référentiel
propre est le référentiel d’où je mesure à partir de moi. Dans mon référentiel propre, je suis
toujours à l’arrêt. Je ne bouge jamais, vu que le référentiel bouge avec moi. De même, tout
objet comme le stylo que nous avons lancé est immobile dans son référentiel propre. Lorsque
l’on fait une expérience, il est donc souvent utile de fixer un référentiel extérieur, qui "ne
bouge pas". On appelle souvent ce référentiel le référentiel de l’observateur, en imaginant qu’il
y a un observateur assis dans la salle de l’expérience qui ne bouge pas.

Définition 1 : Référentiel inertiel

Un référentiel inertiel, aussi appelé référentiel galiléen, est un référentiel dans lequel les
lois de la physique sont les mêmes que celles que l’on connaît. Plus rigoureusement,
c’est un référentiel dans lequel un objet isolé, soumis à aucune force, se déplace en
ligne droite à vitesse constante.

L’ensemble des référentiels inertiels sont obtenus en bougeant, en tournant d’un angle
fixe ou en donnant une vitesse constante à un référentiel inertiel d’origine : c’est la relativité
galiléenne. Cependant, tous les référentiels ne sont pas inertiels. Par exemple, un avion au
décollage n’est pas un référentiel inertiel, parce qu’il est en train d’accélérer. Le référentiel
propre d’un objet est inertiel quand l’objet est libre, quand il n’est affecté par aucune force
ou aucune action extérieure. Par exemple, l’avion au décollage se sert de l’air autour pour
accélérer, et son référentiel n’est donc pas inertiel. Par contre, en supposant que la Terre est
un référentiel inertiel, un avion allant à une vitesse constante a un référentiel propre qui est
aussi inertiel : l’avion utilise de l’énergie pour avancer, mais juste assez pour contrer les effets
de la friction avec l’air, de sorte à ce qu’au final il ait une vitesse constante.

En pratique, il est impossible d’obtenir un référentiel parfaitement inertiel. La Terre tourne
sur elle même et autour du soleil, qui lui-même gravite autour du centre de la galaxie. Mais de
manière générale, on suppose quand même que la Terre est un référentiel inertiel, comme
tout autre objet se déplaçant à une vitesse constante sur sa surface.

1. En réalité, seules les objets possédants une masse strictement positive ont un référentiel propre. Pour avoir
un référentiel propre, il faut évoluer dans le temps, condition qui n’est pas respectée par les objets de masse nulle
voir négative, comme nous allons le voir.
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La relativité de Galilée nous dit que si changeons le référentiel de l’expérience en un autre
référentiel inertiel, mais que nous changeons notre référentiel de la même manière, alors les
résultats de l’expérience mesurés dans notre référentiel propre seront les mêmes.

1.2 La vitesse de la lumière

Si l’on prend naïvement la relativité galiléenne, on s’aperçoit vite que la vitesse de la
lumière est relative. Après tout, c’est une vitesse comme une autre. Si j’envoie un rayon de
lumière dans une direction, je pourrais voir la lumière aller à la vitesse v0. Mais si quelqu’un
d’autre court dans la même direction que la lumière à une vitesse v′, alors il verra depuis son
référentiel propre la vitesse aller à une vitesse v0 − v′.

Pourtant, au milieu du XIXe siècle, Maxwell développe la théorie de l’électromagnétisme. Sa
théorie explique qu’un champ électrique dépend de la permittivité électrique de son milieu, ϵ0
dans le vide, et qu’un champ magnétique dépend de la perméabilité magnétique de son milieu,
µ0 dans le vide. Ce sont deux constantes de l’Univers, qui gouvernent une force fondamentale
du monde tout comme la gravité. Selon Galilée, ces constantes ne doivent donc pas dépendre
du référentiel dans lequel elles sont mesurées.

La théorie de Maxwell explique aussi ce qu’est la lumière : c’est la combinaison d’une onde
électrique et d’une onde magnétique, qui se répondent mutuellement et se maintiennent en
vie l’une grâce à l’autre. Ainsi, Maxwell prédit que dans le vide, la lumière se déplace à une
vitesse

c =
1

√
µ0ϵ0

(1)

En particulier, c’est une quantité qui ne dépend que de deux constantes, les mêmes dans tout
référentiel. Donc la vitesse de la lumière ne doit pas dépendre du référentiel dans lequel on
se trouve. Sa valeur est de

c = 299 792 458 m.s−1 (2)

C’est d’ailleurs la constante qui définit la taille d’un mètre en fonction de la durée d’une
seconde. C’est donc une valeur exacte et non pas une approximation expérimentale. Mais pour
simplifier, nous retenons souvent que c ≃ 3× 108 m.s−1 .

Dans ce cas, est-ce que la relativité Galiléenne a tort ? La formule de composition des
vitesses ne peut qu’être fausse. Il est d’ailleurs assez arbitraire de dire que si un coureur allant
à une vitesse v′ voit un objet allant dans le même sens que lui à une vitesse v0, alors il verra
l’objet aller à une vitesse v0 − v′. Par contre, le principe même de relativité, le fait que les
lois de la physique ne change pas entre référentiels inertiels, peut être gardé. C’est ce simple
principe, avec la constance de la vitesse de la lumière, qui va nous en apprendre long sur la
structure de l’espace-temps.

2 Quelques expériences de pensée

2.1 De la lumière dans un train

Faisons une expérience de pensée 2. Imaginons que nous sommes dans un train en mouve-
ment, de vitesse v. Dans le train, nous disposons deux miroirs face à face à une distance d

2. Une expérience de pensée est une expérience qu’on imagine, et qui nous permet de comprendre le monde qui
nous entoure sans avoir besoin d’aucun outil. La théorie de la relativité restreinte a été intégralement développée
à l’aide d’expériences de pensée.
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l’un de l’autre, un au sol et un au plafond. Puis nous envoyons un trait de lumière sur l’un des
deux miroirs de sorte à ce que maintenant, la lumière rebondissent infiniment entre les deux.

Figure 2 – Expérience des miroirs
dans le train

Imaginons aussi que nous avons un ami sur le quai, qui
regarde avec nous la lumière rebondir entre les miroirs.
Le montage est représenté dans la figure 2.

De notre point de vue dans le train, le train semble
être à l’arrêt. Pour nous, c’est le quai qui bouge à une
vitesse v vers l’arrière. Entre chaque rebond, on voit
la lumière parcourir une distance d0. Sachant que la
lumière va à la vitesse c peut importe le référentiel,
on voit donc la lumière prendre un temps ∆t0 = d0/c
entre chaque rebond. On marque chaque quantité d’un
indice 0, pour indiquer que c’est ce qui est perçu dans
le référentiel propre du train, où l’expérience a lieu.

Maintenant, intéressons nous à ce qui est perçu
par notre ami sur le quai. Lui voit le train bouger et le
quai immobile. Ainsi, il voit aussi la lumière avancer, et
suivre un zig-zag, comme dessiné figure 3. Aux yeux de
cet observateur, le train avance à une vitesse v. Si l’on
écrit ∆t′ le temps que la lumière prend entre chaque
rebond, alors les miroirs avancent d’une distance de
∆t′v entre chaque rebond. Ainsi, par le théorème de
Pythagore, la distance que la lumière doit parcourir
entre chaque rebond est

d′ =
√

∆t′2v2 + d20 (3)

La vitesse de la lumière étant constante, on obtient

∆t′2 = (∆t′2v2 + d20)/c
2 (4)

Figure 3 – Mouvement de la lumière
du point de vue du quai

On note β ≜ v/c le rapport entre la vitesse du train et
la vitesse de la lumière, et γ, connu sous le nom du
facteur de Lorentz

γ ≜
1√

1− β2
(5)

On reconnaît aussi ∆t0 = d0/c, ce qui nous donne

∆t′ = γ∆t0 (6)

C’est notre première observation des effets de la rela-
tivité restreinte ! Comme γ ≥ 1, ∆t′ est plus grand que
∆t0. Si A est en mouvement par rapport à B, alors B
verra le temps de A s’écouler plus lentement que A ne
le verra lui-même.
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Propriété 1 : Dilatation des durées

Supposons deux référentiels, l’un en mouvement de vitesse v par rapport à l’autre. Alors
le temps passé entre deux évènements par le référentiel en mouvement est plus long
d’un facteur γ, le facteur de Lorentz, s’il est mesuré par l’autre référentiel que si il le
mesure lui-même.

Il est intéressant de noter que pour atteindre ce résultat, nous avons supposé que nous et
notre ami mesurons la même hauteur entre les deux miroirs, d0. Cette hypothèse est légitime
parce que le mouvement du train est perpendiculaire à la hauteur entre les deux miroirs. Si
l’on se restreint juste à l’espace en une dimension qui sépare les deux miroirs, il n’y a aucun
mouvement. La mesure doit donc être la même pour nous deux.

La dilatation des durées nous dit que plus on va vite, plus notre temps passe lentement du
point de vue des autres et donc plus ils nous voient aller lentement. C’est une des raisons
pour lesquelles même si l’on accélère constamment, personne ne nous verra jamais atteindre
la vitesse de la lumière.

Prenons maintenant un point de vue neutre. Si deux personnes sont en mouvement l’une par
rapport à l’autre, alors chacune des personnes voit le temps de l’autre passer plus lentement
que l’autre ne le perçoit. À première vue, c’est un paradoxe. En réalité, cela exprime le fait que
les deux personnes sont dans l’impossibilité de synchroniser leurs horloges sans ralentir ou
accélérer : il n’existe plus de notion de simultanéité, le temps est relatif. Nous parlerons plus
de ces paradoxes dans quelques sections.

2.2 Autre expérience dans le train

On sait maintenant que le temps passe plus vite pour la personne dans le train que pour la
personne sur le quai, avec ∆t′ = γ∆t0. Supposons maintenant que les deux personnes veulent

Figure 4 – Expérience pour mesurer
la longueur du train

mesurer la longueur du train. Pour faire cette mesure,
elles marquent t0 l’heure exacte à laquelle l’avant du
train atteint le quai, et t1 l’heure exacte à laquelle l’ar-
rière du train atteint le quai. L’expérience est illustrée
par la figure 4.

On a noté v la vitesse du train vu du quai. Mais v
est en réalité une différence de vitesse entre le train
et le quai : du point de vue du train, c’est le quai qui
bouge, et nous n’avons en réalité aucun moyen de sa-
voir lequel des deux bouge "vraiment". La notion de
mouvement n’existe que relativement à un référen-
tiel. Comme v n’est qu’une différence de vitesse, une
quantité relative, il n’y a aucune raison pour que cette
quantité mesurée depuis le train soit différente. C’est
donc aussi la vitesse du quai vu du train. En notant ∆t0

le temps mesuré depuis le train entre t0 et t1, la personne dans le train obtient une longueur
de train

L0 = v∆t0 (7)

De la même manière, la personne sur le quai mesure un temps ∆t′ entre les deux instants,
et obtient

L′ = v∆t′ (8)
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On peut utiliser (6) pour lier ∆t′ et ∆t0. Cependant, il faut faire un peu attention aux mesures
effectuées et aux référentiels utilisés. Cette fois-ci, nous nous servons d’un point fixe dans le
référentiel du quai pour mesurer le temps qui passe. Autrement dit, l’expérience est conçue
du point de vue du quai. Si l’on changeait de référentiel pour voir cette expérience du point de
vue du train, l’expérience serait un peu différente. Comme le référentiel "par défaut" de cette
mesure de temps est le référentiel du quai, on a ∆t0 = γ∆t′. On obtient alors

L′ =
L0

γ
(9)

On voit que la personne sur le quai voit le train plus court que la personne dans le train.
Plus généralement, si A est en mouvement par rapport à B, alors B verra les longueurs de A
plus courtes que A ne les verra lui-même. Autrement dit, lorsque l’on est en mouvement par
rapport à une autre personne immobile, on voit les longueurs des objets restés immobiles
comme plus courtes.

Propriété 2 : Contraction des longueurs

Supposons deux référentiels, l’un en mouvement de vitesse v par rapport à l’autre. Alors
les longueurs dans le référentiel en mouvement sont plus courtes si elles sont mesurées
dans l’autre référentiel que si elles sont mesurées dans leur référentiel propre, d’un
facteur 1/γ.

Encore une fois, on voit que l’Univers se déforme pour nous empêcher d’atteindre la vitesse
de la lumière : plus on va vite, plus les distances que l’on parcourt sur le monde resté immobile
sont mesurées comme petites et donc plus on a l’impression d’aller lentement.

Avec cette expérience, on voit aussi qu’il est parfois délicat de savoir qui est en mouvement
par rapport à qui, dans quel référentiel les mesures sont faites, et dans quel sens appliquer
les formules. Au cours de la section suivante, nous allons explorer la relativité restreinte d’une
manière plus moderne et plus claire, pour lever tout doute.

3 L’espace-temps

3.1 Système de coordonnées

Comme la relativité restreinte lie l’espace avec le temps, par exemple en changeant notre
perception des distances en fonction d’un changement de vitesse, il est nécessaire de regarder
l’espace et le temps ensemble. En mécanique classique, on regarde les coordonnées (x, y, z)
d’un objet dans un espace en 3 dimensions en fonction du temps t. Par exemple, si on lance
un stylo en l’air, on s’intéresse à une fonction comme z(t) = z0 + v0t− g

2 t
2, où z représente la

hauteur du stylo, comme illustré par la partie gauche de la figure 5. Mais si on prend en compte
la relativité restreinte, ce genre d’expression perd tout son sens parce que la notion même
de temps dépend du référentiel. On préférerait donc regarder les coordonnées (t, x, y, z) d’un
objet dans l’espace-temps en 4 dimensions, en fonction d’un paramètre s. Dans le cas d’un
stylo lancé en l’air on, ne s’intéresserait alors plus à une fonction z(t) mais à deux fonctions
z(s) et t(s), comme illustré par la partie droite de la figure 5.

Le problème de s’intéresser à (t, x, y, z) est que ces coordonnées ne sont pas homogènes
dans leurs dimensions. t à une dimension temporelle, alors que les autres ont une dimension
spatiale. Pour lier les deux ensemble, il faut introduire une constante en [m.s−1] ou en [s.m−1],
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Figure 5 – Trajectoire d’un stylo en fonction du temps t
ou d’un autre paramètre s

donc une vitesse ou son inverse.
La seule vitesse que l’on connaît
qui soit une constante de l’Univers
est c. On considère donc les coor-
données (ct, x, y, z). On pourrait tout
aussi bien considérer (t, x/c, y/c, z/c),
mais c’est plus ennuyant à écrire.
Lorsque l’on fait de la physique rela-
tiviste à plus haut niveau, on consi-
dère souvent c = 1, que l’on obtient
en passant des mètres et des se-
condes à d’autres unités, appellées
unités naturelles. De cette façon, on
peut à nouveau considérer les co-
ordonnées (t, x, y, z), cette fois ci di-
mensionnellement homogènes. On
peut ensuite retrouver les valeurs
usuelles par analyse dimensionnelle.

Définition 2 : Quadrivecteur position

Un ensemble de coordonnées physiques a dans l’espace-temps s’appelle un quadri-
vecteur. (ct, x, y, z) est le quadrivecteur position, et indique la position d’un objet dans
l’espace-temps, mesuré dans un certain référentiel.

a. par physiques, nous entendons qui se transforme de la même manière que le quadrivecteur position
sous les transformations du groupe de Lorentz, décrites dans la sous-section suivante.

Il est parfois ennuyant d’écrire (ct, x, y, z) pour nommer explicitement les différents compo-
sants d’un quadrivecteur. Dans le cas de coordonnées en 3 dimensions, il est courant de noter
p⃗ la position ou v⃗ la vitesse. On note alors les composants p⃗ = (p⃗x, p⃗y, p⃗z) ou v⃗ = (v⃗x, v⃗y, v⃗z). Il
est alors facile d’étendre cette notation en notant par exemple P le quadrivecteur position,
et (Pct, Px, Py, Pz) ses composants. De manière plus moderne, nous avons tendance à ne pas
nommer les axes x, y, z explicitement, car ils peuvent facilement induire en erreur. Nous
pouvons simplement appeler ces axes 1, 2, 3, et dénommer l’axe temporel 0. Nous notons alors
le quadrivecteur position Xi avec i une variable allant de 0 à 3. X0 dénote la position dans le
temps, tandis que (X1, X2, X3) dénote la position dans l’espace. Cependant, nous allons garder
autant que possible la notation (ct, x, y, z) au fil de ce cours pour être le plus clair possible.

Retournons maintenant à l’évolution d’un objet. En évoluant avec le paramètre s, le
quadrivecteur position forme un chemin dans l’espace-temps, comme dessiné sur la figure
5. On appelle ce chemin la trajectoire de l’objet dans l’espace-temps. Il est important de
noter que s ne sert qu’à tracer la trajectoire de l’objet dans l’espace-temps, et n’a aucun sens
physique. Par exemple, si on lance le même stylo en l’air que tout à l’heure, on peut avoir
z(s) = z0 + 2v0s − 2gt2 et ct(s) = 2cs. La fonction z(s) est un peu différente de celle que nous
avions précédemment. Mais en remarquant que t = 2s, on voit que c’est en fait la même chose
en fonction du temps.

7/20



Physicité IPhO : Relativité Restreinte

Définition 3 : Masse au repos

Un objet, ou plus concrètement une masse a, est dit au repos dans un référentiel donné
si il ou elle est immobile. Autrement dit, un objet est au repos si sa trajectoire évolue le
long du temps et reste constante dans l’espace.

a. Comme nous allons le voir, un objet sans masse ou avec une masse négative ne peut pas être au
repos.

On peut noter qu’un objet est toujours au repos dans son référentiel propre.

3.2 Les transformations de Lorentz

Avec ce système de coordonnées, nous sommes prêts à retourner à la relativité galiléenne.
La relativité galiléenne dit que si l’on bouge d’une distance fixe, qu’on tourne d’un angle fixe
ou qu’on prend une vitesse constante, les lois de la physique restent les mêmes. Regardons
comment ces changements de référentiels affectent le quadrivecteur position.

Tourner le référentiel est une opération connue sous le nom de rotation. Une rotation
dépend de deux paramètres : l’axe de rotation Or et l’angle de rotation θ. L’axe de rotation peut
être n’importe quelle direction spatiale, mais n’importe quelle rotation peut être exprimée
comme une succession de rotations autours des axes Ox, Oy et Oz. Pour cette raison, nous
allons seulement définir la rotation Rx(θ) autours de l’axe Ox, la rotation Ry(θ) autours de l’axe
Oy, et la rotation Rz(θ) autours de l’axe Oz. Étant donné un quadrivecteur position (ct, x, y, z),
nous avons 3

Rx(θ)


ct
x
y
z

 =


ct
x

y cos(θ)− z sin(θ)
y sin(θ) + z cos(θ)

 (10)

Ry(θ)


ct
x
y
z

 =


ct

x cos(θ) + z sin(θ)
y

−x sin(θ) + z cos(θ)

 (11)

Rz(θ)


ct
x
y
z

 =


ct

x cos(θ)− y sin(θ)
x sin(θ) + y cos(θ)

z

 (12)

Une deuxième opération permettant de passer d’un référentiel inertiel à un autre est le
changement de vitesse, dénommée la boutée 4 en français, mais plus souvent appelé le boost
par anglicisme ou parfois la "transformation spéciale de Lorentz". Le boost Bv⃗ est paramétrisée
par un vecteur spatial v⃗ = (vx, vy, vz), la vitesse que l’on ajoute au référentiel. Mais un boost
de v⃗ n’est que la succession d’un boost de vyy⃗ = (0, vy, 0), d’un boost de vxx⃗ = (vx, 0, 0) et d’un
boost de vz z⃗ = (0, 0, vz). Pour cette raison, nous allons seulement définir les boosts Bvx⃗, Bvy⃗ et
Bvz⃗ pour n’importe quel vitesse v. En utilisant la dilatation des durées et la contraction des

3. Nous notons ici les quadrivecteurs sous forme de colonne, autant pour la lisibilité que pour respecter les
conventions d’algèbre linéaire.

4. Terme ancien remis au goût du jour dans le contexte de la relativité par Thibault Damour. Historiquement,
c’est ce terme qui donne aujourd’hui des expressions comme bout-en-train.
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longueurs obtenues précédemment, on peut voir que le quadrivecteur position (ct, x, y, z) se
transforme comme

Bvx⃗


ct
x
y
z

 =


γ (ct− βx)
γ(x− βct)

y
z

 , Bvy⃗


ct
x
y
z

 =


γ (ct− βy)

x
γ(y − βct)

z

 , Bvz⃗


ct
x
y
z

 =


γ (ct− βz)

x
y

γ(z − βct)

 (13)

où β = v
c et γ = 1/

√
1− β2 sont les mêmes que dans l’équation (6).

Ensemble, les rotations et les boosts forment le groupe de Lorentz, et sont appelées
transformations de Lorentz. C’est l’ensemble des transformations que l’on peut faire sans
changer les lois de la physique et sans changer l’origine, le quadrivecteur (0, 0, 0, 0).

Enfin, la dernière opération autorisée par la relativité galiléenne est celle qui bouge le
référentiel, appelée translation. Une translation Tα est paramétrisée par un autre quadrivecteur
α⃗ = (αct, αx, αy, αz). Elle agit sur un quadrivecteur (ct, x, y, z) par

Tα


ct
x
y
z

 =


ct+ αct

x+ αx

y + αy

z + αz

 (14)

Combiner une translation avec une transformation du groupe de Lorentz, donc une somme
de boosts et de rotations, forme une transformation du groupe de Poincaré. Avec ces trans-
formations, il est toujours possible d’aller d’un référentiel inertiel à un autre, et on peut
donc toujours ramener tout un problème dans un seul référentiel pour ne pas se tromper de
mesures.

3.3 Notre Univers

En voyant toutes les différentes manières de transformer les coordonnées, on peut se
demander si il reste quelque chose de stable, qui ne change pas avec les transformations de
Lorentz ou les translations. Il se trouve que pour un quadrivecteur (ct, x, y, z), la quantité

s2 = c2t2 − x2 − y2 − z2 (15)

ne change jamais. On peut appliquer ça pour trouver une quantité invariantes entre deux
points de l’espace-temps.

Définition 4 : Intervalle de Lorentz

Étant donné deux coordonnées dans l’espace-temps (ct, x, y, z) et (ct′, x′, y′, z′), l’intervalle
de Lorentz ∆s est définie par

∆s2 ≜ c2(t− t′)2 − (x− x′)2 − (y − y′)2 − (z − z′)2 (16)

L’intervalle de Lorentz est la même dans tous les référentiels inertiels.

On peut comprendre la quantité s associée à un quadrivecteur comme une sorte de longueur
de ce quadrivecteur, appelée norme du quadrivecteur, et l’intervalle de Lorentz entre deux
points de l’espace-temps comme une sorte de distance entre ces deux points. Ce n’est pas une
vraie notion de distance, puisque l’intervalle de Lorentz entre deux points de l’espace-temps
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peut être négative, et puisque le fait que deux points soient à une distance 0 l’un de l’autre
ne veut pas dire qu’ils sont au même endroit. Malgré tout, nous pouvons définir une notion
de géométrie dans l’espace-temps grâce à cette espèce de distance. Cet espace-temps où la
distance est donné par l’intervalle de Lorentz est appelé l’espace de Minkowski.

Par définition, les transformations du groupe de Poincaré sont des isométries de cet espace,
c’est à dire qu’elles ne changent pas les distances. On peut les comprendre comme des
symétries de l’espace, une manière de définir l’homogénéité de l’espace. Ce sont d’ailleurs les
seules isométries de l’espace.

Figure 6 – Exemple d’isométrie en 2
dimensions

Comparons à l’univers dont nous avons l’habitude.
Dans notre espace usuel, les seules isométries qui
existent sont les rotations et les translations. Une iso-
métrie générale en 2 dimensions est représentée dans
la figure 6. Le fait que les translations soient des iso-
métries signifie que l’espace est en tout point le même,
tandis que le fait que les rotations soient des isomé-
tries signifie que l’espace est isotrope, qu’il n’existe
pas de différence entre les différentes directions. Dans
un espace de 3 dimensions homogène et isotrope, il est
naturel de s’attendre à ce que tout fonctionne pareil si
on bouge ou on tourne, car cela ne change pas l’Univers.
De même, en partant du principe que nous vivons dans
l’Univers de Minkowski, il est naturel de s’attendre à

ce que les transformations de Lorentz et les translations ne changent pas la physique : ce
sont les symétries de l’Univers.

Figure 7 – Diagramme de l’espace de
Minkowski

Par ailleurs, il est intéressant de noter qu’un espace
(ou espace-temps) de dimension n peut au maximum
avoir n(n+ 1)/2 symétries indépendantes. En 4 dimen-
sions, pour les 4 dimensions de l’espace-temps, il peut
y avoir au maximum 10 symétries indépendantes. Les
transformations du groupe de Poincaré sont au nombre
de 4 pour les translations, 3 pour les boosts, et 3 pour
les rotations ! Cela fait 10, indiquant que l’espace de
Minkowski possède le nombre de symétries maximum
et qu’il est impossible d’en avoir plus 5. Nous n’en avons
pas oublié.

Supposons que nous sommes à un point de l’es-
pace de Minkowski. Alors nous pouvons classifier les
autres points de l’espace en 3 catégories. Soit ils sont
à une distance 0 de nous, soit ils sont à une distance
positive de nous, soit ils sont à une distance négative
de nous. Comme changer de référentiel ne change pas
les distances, ces catégories sont valides peu importe
l’observateur. Ce sont des vérités universelles. La fi-
gure 7 montre à quoi ressemble l’Univers de Minkowski
divisé en ces 3 catégories. En rouge sont les points à
une distance négative de nous, en bleu sont les points
à une distance nulle de nous. Les points à une distance positive de nous sont encore divisés

5. A moins de passer à un super-espace, qui amène à la supersymétrie
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en 2 catégories : en vert ceux qui ont un temps plus grand que nous, et en jaune ceux qui ont
un temps plus petit que nous. Puisque la notion d’intervalle de Lorentz est constante à travers
les changements de référentiels, il en va de même de leurs signes : les catégories que nous
venons de définir sont universelles et ne dépendent pas du point de vue.

Supposons que nous voulions atteindre un objet situé sur un point à une distance 0 de
nous. Alors le vecteur qui nous sépare prend la forme (ct, x, y, z), tel que

c2t2 = x2 + y2 + z2 (17)

Pour atteindre ce point, il faudrait aller à une vitesse v = d/t, avec d =
√
x2 + y2 + z2 par le

théorème de Pythagore. Mais on a alors v = c, il faut aller à la vitesse de la lumière pour
atteindre ces points. Les quadrivecteurs de norme nulle sont appelés vecteurs de genre
lumière, parce que seule la lumière peut se déplacer dans cette direction. Sur la figure 7, les
points en bleu sont donc tous les points atteints par une lumière partant de nous et allant en
ligne droite.

Définition 5 : Cône lumière

Les vecteurs de genre lumière forment un cône, appelé le cône lumière. Ceux qui se
situent dans le futur, avec un temps positif, forment le cône de lumière futur. Ce sont
les points que la lumière pourra atteindre dans le futur en partant de 0. Les vecteurs de
genre lumière avec un temps négatif forment quant à eux le cône de lumière passé.

Si il faut aller à la vitesse de la lumière pour atteindre les points bleus, alors il faut aller
encore plus vite pour atteindre les points rouges, qui constituent "l’ailleurs". Ce sont les points
qui nous sont inaccessibles, auxquels nous ne sommes jamais allés et auxquels nous ne
pourrons jamais allés. Une trop grande distance spatiale nous sépare, raison pour laquelle les
quadrivecteurs de norme négative sont appelés vecteurs de genre espace. Ces quadrivecteurs
nous indiquent dans quelle direction est le reste de l’espace, ce qui peut être utile par exemple
aux confins d’un trou noir.

Enfin, les points en vert et jaunes sont les points qui peuvent avoir un lien causal avec
nous. Les points en vert ont un plus grand temps que nous, ce sont les points que nous
pouvons atteindre dans le futur et que nous pouvons influencer. Ils forment notre "futur".
Réciproquement, les points en jaune sont ceux d’où nous pouvons venir, qui ont pu nous
influencer par le passé. Ils forment notre "passé". Ces vecteurs sont appelés des vecteurs
de genre temps. Il est important de noter que la notion de passé et de futur ne fait sens
qu’à l’intérieur des cônes lumières. Dans l’ailleurs, la notion de passé ou de futur dépend du
référentiel choisi.

Le fait que ces catégories soient universelles, peu importe le référentiel, signifie que la
causalité ne peut pas être brisée. Un point inaccessible restera toujours un point inaccessible,
peu importe le point de vue, tandis qu’un point avec un lien causal pourra toujours avoir un
lien causal, peu importe le point de vue. Enfin, les vecteurs de genre lumière restent toujours
de genre lumière, montrant que la vitesse de la lumière est constante.

3.4 Temps et paradoxes

Supposons que nous sommes à un point p1 = (ct, x, y, z) de l’espace de Minkowski, et que
nous évoluons vers un autre point p2 = (ct′, x′, y′, z′). À l’aide d’une translation, on peut amener
p1 à (0, 0, 0, 0) puis à l’aide d’un boost, on peut amener p2 à (cτ, 0, 0, 0). Autrement dit, nous
pouvons changer de référentiel pour nous placer dans notre référentiel propre, dans lequel

11/20



Physicité IPhO : Relativité Restreinte

nous ne bougeons pas et ne faisons qu’évoluer dans le temps. τ est alors le temps qu’il nous
faut pour aller de p1 à p2, dans notre référentiel propre. Puisque l’intervalle de Lorentz entre
les deux points n’a pas changé, on a ∆s = cτ . La distance entre deux points est proportionnelle
au temps propre passé pour aller de l’un à l’autre.

De ce point de vue, nous pouvons réinterpréter l’espace de Minkowski. Les points qui sont
séparés de nous par un vecteur de genre temps sont des points que nous pouvons atteindre en
avançant dans le temps, ou qui peuvent nous atteindre en avançant dans le temps. C’est pour
ça qu’ils sont liés à nous causalement. Si nous voulions atteindre la vitesse de la lumière et
atteindre un point séparé de nous par un vecteur de genre lumière, alors il nous faudrait arrêter
notre temps. C’est impossible, et c’est pour ça que la vitesse de la lumière est inatteignable.
Pire encore, si nous voulions atteindre un point séparé de nous par un vecteur de genre espace,
alors il nous faudrait remonter notre temps.

Maintenant que nous savons lire le temps propre dans l’espace de Minkowski, nous pouvons
essayer de mieux comprendre ce que dit la relativité restreinte, et la dilatation du temps. Dans
la représentation de l’espace de la figure 7, une translation signifie un déplacement sur le
diagramme, tandis qu’une rotation est invisible car l’espace n’est représenté que dans une
seule direction. Un boost, quant à lui, penche le temps propre et l’espace propre du référentiel.

Supposons par exemple que nous avons une personne A en vert et une personne B en
rouge. Plaçons nous dans le référentiel propre de A, et supposons que B se déplace à une
certaine vitesse par rapport à A. Dans son référentiel propre, B se déplace le long du temps, et
croit ne pas bouger. Mais du point de vue de A, B a une vitesse et donc se déplace avec le
temps, ce qui résulte visuellement en un temps penché. C’est ce qui est représenté dans la
figure 8, où le diagramme est dessiné avec A et B au même instant selon A.

On peut déjà remarquer que A et B ont beau être représentés au même instant selon A, A
est dans le passé de B selon B. C’est un effet de la relativité du temps, et cela signifie que la

Figure 8 – Représentation d’un réfé-
rentiel boosté vu depuis un autre

notion de simultanéité est perdue avec la relativité
restreinte. Seule la notion de causalité passée ou future
reste. Ici, A et B sont séparés par un vecteur de genre
espace, et ne sont donc pas liés causalement.

Alors pourquoi est-ce que le temps parait plus long
pour A que pour B? Pour voir cela, supposons que A
et B avance un peu le long de leurs temps propres,
c’est à dire qu’ils continuent librement leur mouve-
ment respectif sans force extérieure. Puis supposons
qu’après un temps T mesuré par A, on arrête à nou-
veau le temps pour regarder ce qu’il s’est passé. Le
nouvel espace perçu par A est représenté en pointillés
noirs sur la figure 8. A est maintenant à l’intersection
entre son temps propre, dessiné en tirets verts, et le
nouvel espace qu’il perçoit. Il s’est déplacé de T le long
du temps, et a mesuré un temps T . B quant à lui est
maintenant à l’intersection entre son temps propre,
dessiné en tirets rouges, et le nouvel espace. Comme
son axe du temps est penché du point de vue de A, on
peut voir que l’intervalle de Lorentz entre sa nouvelle
position et son ancienne position est plus petite que A.
De manière générale, on peut voir dans l’équation (15)
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que plus un trait est penché dans le diagramme, plus sa norme est petite. C’est la dilatation
du temps

Figure 9 – Représentation du para-
doxe des jumeaux

Un paradoxe connu de la relativité restreinte est
le paradoxe des jumeaux : imaginons deux jumeaux,
nés en même temps sur Terre. L’un, dont la trajectoire
est représentée en vert sur la figure 9, reste sur Terre.
L’autre, dont la trajectoire est représentée en rouge,
pars explorer l’espace avant de faire demi-tour pour
revenir sur Terre. Si l’on se place sur le référentiel de la
Terre, on peut imaginer que le jumeau dans la navette
spatiale va très vite et ressent donc moins de temps
passer que son jumeau sur Terre. Quand le jumeau
dans l’espace revient sur Terre, il devrait donc être
beaucoup plus jeune que son jumeau resté sur Terre.
C’est ce qu’on voit sur la partie haute de la figure 9.
La trajectoire rouge parcourt une distance beaucoup
plus petite que la trajectoire verte, avec les distances
de l’espace de Minkowski.

Pourtant, si on se place dans le référentiel du ju-
meau qui part dans l’espace, on pourrait imaginer la
même chose. De son point de vue, le jumeau sur Terre
part explorer l’espace avec la Terre, tandis que la na-
vette spatiale reste immobile. De ce point de vue là,
c’est le jumeau parti dans l’espace qui devrait être
plus vieux une fois de retour sur Terre. Alors, où est
le problème? Si on essaye de changer le référentiel
de la partie haute de la figure 9, on obtient la figure
dessinée en dessous. En fait, si on veut se placer dans le référentiel de la navette spatiale, un
problème se passe au moment où elle fait demi-tour. Sur la figure, on voit que la trajectoire
verte se brise en deux. C’est parce que en réalité, il est impossible de changer de vitesse
instantanément comme ça. Changer de vitesse change la notion du temps, donc changer
instantanément de vitesse brise la ligne du temps. Pour faire demi-tour, il faut passer par
une phase d’accélération, qui rend le référentiel propre de la navette non-inertiel. C’est à ce
moment que se passe la physique intéressante, et que la symétrie entre les deux jumeaux est
brisée.

Finalement, c’est bien le jumeau resté sur terre qui vieillira le plus vite. C’est la conséquence
d’un fait plus général : le chemin le plus long entre deux points dans l’espace de Minkowski
est la ligne droite entre les deux. Aller d’un point A à un point B en suivant une ligne droite, à
vitesse constante, sans jamais accélérer ou décélérer, est le moyen le plus long de faire ce
trajet. Toute personne déviant du chemin en ligne droite et à vitesse constante arrivera à B
plus jeune que les personnes ayant suivi ce chemin.

4 Dynamique relativiste

4.1 Le quadrivecteur vitesse

Jusque là, nous n’avons vu qu’un seul type de quadrivecteur : le quadrivecteur position. Ce
quadrivecteur est pratique pour étudier et comparer des trajectoires dans l’espace-temps,
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mais il n’est souvent pas suffisant pour faire de la mécanique. Pour pouvoir avoir une chance
de faire de la mécanique Newtonienne, il nous fait définir une notion de vitesse dans l’espace-
temps de Minkowski. La vitesse est la dérivée de la position par le temps. Mais si le temps est
une notion relative au référentiel, on a aucune chance que le quadrivecteur vitesse obtenu se
transforme toujours d’une jolie manière avec les transformations de Lorentz. La solution est
de dériver par rapport au temps propre.

On rappelle de l’équation (6) que si on voit un objet bouger alors à une vitesse v, alors
son temps propre est 1/γ fois plus petit que le notre. Autrement dit, dτ = dt/γ. Donc si on
veut calculer la vitesse d’un objet dans son temps propre, de vitesse v = (vx, vy, vz) dans notre
référentiel, on a

d
dτ

(ct, x, y, z) = γ
d
dt

(ct, x, y, z) = γ(c, vx, vy, vz) (18)

Définition 6 : Quadrivecteur vitesse

Le quadrivecteur vitesse d’un objet se déplaçant à la vitesse v = (vx, vy, vz) est
(γc, γvx, γvy, γvz).

À basse vitesse, β = v
c est proche de 0 donc le facteur de Lorentz γ est proche de 1. Dans ce

cas, on retrouve l’expression usuelle de la vitesse. À basse vitesse, la composante temporelle
du quadrivecteur est juste constante égale à c : c’est la vitesse à laquelle on se déplace dans
le temps. Si on calcule la norme du quadrivecteur vitesse, on obtient

s2 = γ2(c2 − v2) =
c2 − v2

1− v2

c2

= c2 (19)

En fait, c n’est pas juste la vitesse de la lumière : c’est la vitesse constante à laquelle toute
chose se déplace dans l’espace-temps. Nous, humains, nous déplaçons lentement dans
l’espace, et donc à une vitesse proche de c dans le temps. La lumière, quant à elle, ne se
déplace pas du tout dans le temps. Elle doit donc se déplacer à la vitesse c dans l’espace.

Sous une translation, le quadrivecteur vitesse ne change pas. Mais sous une transformation
de Lorentz, le quadrivecteur vitesse se transforme comme le quadrivecteur position. Sous les
rotations Rx(θ), Ry(θ) et Rz(θ), le quadrivecteur vitesse (γc, γvx, γvy, γvz) se transforme comme

Rx(θ)


γc
γvx
γvy
γvz

 = γ


c
vx

vy cos(θ)− vz sin(θ)
vy sin(θ) + vz cos(θ)

 (20)

Ry(θ)


γc
γvx
γvy
γvz

 = γ


c

vx cos(θ) + vz sin(θ)
vy

−vx sin(θ) + vz cos(θ)

 (21)

Rz(θ)


γc
γvx
γvy
γvz

 = γ


c

vx cos(θ)− vy sin(θ)
vx sin(θ) + vy cos(θ)

vz

 (22)
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Sous les boosts Bv′x⃗, Bv′y⃗ et Bv′z⃗, en notant β′ = v′/c et γ′ = 1/
√
1− β′, il se transforme

comme

Bv′x⃗


γc
γvx
γvy
γvz

 =


γ′γ (c− β′vx)
γ′γ(vx − β′c)

γvy
γvz

 , Bv′y⃗


γc
γvx
γvy
γvz

 =


γ′γ (c− β′vy)

γvx
γ′γ(vy − β′c)

γvz

 , Bv′z⃗


γc
γvx
γvy
γvz

 =


γ′γ (c− β′vz)

γvx
γvy

γ′γ(vz − β′c)


(23)

Il est intéressant de remarquer que lorsque l’objet et le référentiel ne bougent pas trop
vite, donc pour γ et γ′ proches de 1, on retrouve immédiatement la formule de composition
des vitesses donnée par la relativité galiléenne, décrite dans la section 1.2.

4.2 Du mouvement dans le mouvement

En exploitant l’équation (23), il est possible de composer les vitesses en relativité restreinte,
et même de corriger la formule de l’effet Doppler. Les formules qui en sortent ne sont
cependant pas aussi jolies que ce qu’on a vu jusque là, et le calcul de l’effet Doppler relativiste
demande de connaître l’effet Doppler. Pour cette raison, le contenu de cette sous-section est
plus orienté pour les élèves de prépa, et n’est pas au programme des IPhOs pour les lycéens.

Supposons que nous avons un objet se déplaçant à une vitesse v dans un référentiel en
mouvement par rapport à nous, de vitesse u. Pour passer du référentiel en mouvement au
notre, il faut booster le référentiel de −u. Par (23), on a la transformation

γvv → γvγ−u(v − β−uc) = γv′v
′ (24)

où v′ est la vitesse de l’objet mesurée dans notre référentiel. En développant les β et γ dans
l’égalité à droite et en passant au carré, on obtient

v′2

1− v′2

c2

=
(v + u)2

(1− v2

c2
)(1− u2

c2
)

(25)

En divisant par c2 de chaque côté et par c2 le nominateur et le dénominateur de la partie de
droite, puis en multipliant de chaque côté par (c2 − v2) et en regroupant les termes en v′2, on a

v′2
(
1 +

c2(v + u)2

(c2 − v2)(c2 − u2)

)
=

c4(v + u)2

(c2 − v2)(c2 − u2)
(26)

Puis en isolant v′2, en simplifiant la fraction et en repassant à la racine, on obtient finalement

v′ =
v + u

1 + vu
c2

(27)

C’est la formule de composition des vitesses.

Qu’en est-il de l’effet Doppler ? Supposons qu’une source émettent un signal à une
fréquence f0, donc de longueur d’onde λ0 =

c
f0
. On veut savoir quelle est la fréquence perçue

par un observateur s’éloignant à une vitesse v de la source, comme représenté sur la figure 10.
On se place dans le référentiel de la source.

On commence par chercher le temps qui s’écoule entre deux moments où l’observateur
reçoit un signal. Au moment où l’observateur reçoit un signal, le suivant est à une distance λ0
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Figure 10 – Situation pour l’effet Doppler

derrière. Si on commence un chrono à ce
moment et qu’on mesure la distance parcou-
rue par chacun, l’observateur parcourt une
distance vt tandis que le signal derrière par-
court une distance ct. Vu que le signal derrière
doit parcourir une distance de λ0 de plus que
l’observateur pour le rattraper, on cherche
l’instant t0 tel que

vt0 = ct0 − λ0 (28)

Nous obtenons
t0 =

λ0

c− v
=

c

(c− v)f0
=

1

(1− β)f0
(29)

Mais l’observateur va à une vitesse v, donc le temps qu’il perçoit t′ est dilaté d’un facteur
de Lorentz inverse. t′ = t0/γ. En notant f ′ = 1/t′ la fréquence perçue par l’observateur et en
remarquant que (1− β2) = (1− β)(1 + β), nous obtenons

f ′ = γ(1− β)f0 =
(1− β)√

1− β
√
1 + β

f0 =

√
1− β

1 + β
f0 (30)

Cette dernière expression est la formule de l’effet Doppler relativiste.

4.3 Masse et énergie

Maintenant qu’on a vu étudié la version relativiste de la vitesse, on souhaite s’attaquer à la
version relativiste de l’impulsion p⃗ = mv⃗, parfois appelée quantité de mouvement. On définit
le quadrivecteur impulsion comme m fois le quadrivecteur vitesse. Pour les composantes
spatiales, on obtient (γmvx, γmvy, γmv) = γp⃗. L’impulsion relativiste n’est rien de plus que
l’impulsion classique multipliée par γ, comme pour la vitesse. De l’autre côté, la composante
temporelle est γmc. C’est l’impulsion de l’objet dans le temps. C’est en fait son énergie divisée
par c, E = γmc2.

Définition 7 : Quadrivecteur impulsion

Le quadrivecteur impulsion, aussi appelé quadrivecteur énergie-impulsion ou quadri-
vecteur moment, d’un objet d’énergie E et d’impulsion non-relativiste p⃗ = mv⃗ est
(E/c, γpx, γpy, γpz).

Le quadrivecteur impulsion se transforme tout comme le quadrivecteur vitesse. La norme
du quadrivecteur impulsion est constant pour chaque objet, et ne dépend pas du référentiel :
c’est mc. Dans la physique moderne, c’est de cette manière que nous définissons la masse. La
masse d’un objet est la norme de son quadrivecteur impulsion divisée par c.

Comme l’énergie d’un objet est son impulsion dans le temps, elle dépend du référentiel de
l’observateur. On obtient grâce à ce quadrivecteur une manière générale pour calculer l’énergie
d’un objet

E2 = m2c4 + p2c2 (31)

où ici p est l’impulsion relativiste, égale à γmv. Dans le contexte des théories modernes
quantiques, cette équation s’appelle l’équation de Klein-Gordon, et c’est cette équation qui est
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utilisée pour comprendre le mouvement d’une certaine classe de particules appelés bosons,
dont le photon fait partie.

De cette équation, on voit que l’énergie d’un objet peut provenir de deux choses : sa masse
et sa vitesse. Un objet qui n’a pas de masse, comme un photon, est obligé d’avoir toute son
énergie dans la vitesse. C’est pour ça que ces objets vont à la vitesse de la lumière. En réalité,
la lumière n’est pas la seule à aller à cette vitesse. C’est le cas de tout objet sans masse.
D’un autre côté, n’importe quel objet ayant une masse ne peut pas atteindre la vitesse de la
lumière.

On peut appliquer l’équation (31) à un objet dans son référentiel propre, ou pour un objet
que l’on voit à l’arrêt, au repos. On obtient la fameuse équation d’Einstein

E = mc2 (32)

On peut aussi calculer l’impulsion d’un photon, chose habituellement impossible dû à sa
masse nulle. Comme un photon a une masse nulle, la norme de son quadrivecteur est nulle
aussi. On a alors E = pc. Mais l’énergie d’un photon est donnée par la première relation de
Planck-Einstein E = hν, avec ν = c

λ la fréquence du photon. On obtient donc

p =
h

λ
(33)

C’est la formule de De Broglie reliant l’impulsion et la longueur d’onde d’un photon. Cette
formule est fondamentale en mécanique quantique car elle relie une quantité usuellement
associé à une particule, l’impulsion, à une quantité usuellement associé aux ondes, la longueur
d’onde.

Pour retrouver les formules de mécanique classique, on peut supposer être à basse vitesse
et approximer l’équation (31) pour γ proche de 1. On obtient

E = mc2
√

1 +
p2

m2c2
≃ mc2 +

mc2

2

p2

m2c2
= mc2 +

1

2
mv2 (34)

On reconnaît ici l’énergie cinétique habituelle, en plus du terme donné par l’équation (32)
correspondant à l’énergie de l’objet au repos.

Qu’advient-il des lois de conservations ? En mécanique classique, l’énergie et l’impulsion
totale d’un système fermé sont conservées. La relativité restreinte respecte toujours ce
principe, avec l’énergie et l’impulsion relativistes. Les deux lois de conservation peuvent être
accumulées en un seul principe : la conservation du quadrivecteur impulsion total dans un
système fermé. Supposons que nous avons un système physique avec n objets, et notons P i

k

le quadrivecteur impulsion du kième objet. Alors le quadrivecteur impulsion total P i
tot défini par

P i
tot =

n∑
i=1

P i
k (35)

est toujours conservé dans un système fermé, pour chaque i. Pour i = 0 nous avons la
conservation de l’énergie relativiste tandis que pour i = 1, 2, 3 nous avons la conservation de
l’impulsion relativiste.

Il est intéressant de noter que puisque le quadrivecteur impulsion total est conservé, sa
norme l’est aussi. C’est une constante qui ne change pas dans le temps, et qui ne change pas
en fonction du référentiel. C’est la masse totale invariante. Attention cependant, car la norme
de P i

k n’est pas égale à la somme des normes des P i
k. Cela veut dire que la masse n’est pas

toujours conservée.
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4.4 Force et puissance

Maintenant que nous avons à notre disposition une notion relativiste d’impulsion, nous
pouvons chercher à appliquer la première loi de Newton de manière relativiste pour obtenir la
trajectoire d’objets subissant des forces. Cela demande cependant de bonnes connaissances
en mécanique, et le contenu de cette sous-section n’est donc pas au programme des IPhOs
pour les lycéens.

La première loi de Newton nous dit que pour un objet d’impulsion p⃗ subissant une force
externe F⃗ , nous avons

F⃗ =
dp⃗
dt

(36)

En insérant l’expression de l’impulsion relativiste, nous obtenons l’équation relativiste du
mouvement

F⃗ =
d(γmv⃗)

dt
(37)

Le temps t et la force F⃗ dépendent ici du référentiel, mais il est toujours possible de fixer
un référentiel pour faire tous les calculs. Nous avons vu précédemment que p⃗ = γmv⃗. En notant
a⃗ dv⃗

dt , nous pouvons trouver
dβ2

dt
= 2

v⃗ · a⃗
c2

,
dγ
dt

= γ3
v⃗ · a⃗
c2

(38)

En développant l’équation (37), nous avons

F⃗ = mγa⃗+mγ3
v⃗ · a⃗
c2

v⃗ (39)

Le premier terme correspond à la partie classique de l’équation du mouvement, tandis
que le deuxième est une correction ajoutée dû aux effets relativistes. Nous pouvons déjà
voir que c’est un terme qui va dans le même sens que le mouvement de l’objet, et qui croit
très vite avec γ. Ajouter un terme à F⃗ dans le sens de la vélocité revient à enlever un terme
à l’accélération a⃗ dans le sens de la vélocité. Autrement dit, la correction relativiste limite
l’accélération dans la direction du mouvement, donc limite la manière dont la force augmente
la vitesse de l’objet. Nous pouvons déjà imaginer que ce terme est ce qui empêche un objet de
dépasser la vitesse de la lumière. Pour mieux comprendre cet effet, nous pouvons diviser la
force F⃗ et l’accélération a⃗ en deux parties : une partie parallèle au mouvement, F⃗∥ ∥ et a⃗∥, et
une partie orthogonale au mouvement, F⃗⊥ et a⃗⊥, de sorte à ce que nous ayons

F⃗∥ · v⃗ = F∥v , F⃗⊥ · v⃗ = 0 (40)

et de même pour l’accélération. En injectant ces termes dans l’équation (39) et en simplifiant,
nous obtenons

a⃗∥ =
F⃗∥

γ3m
, a⃗⊥ =

F⃗⊥
γm

(41)

Dans le cas d’une force perpendiculaire au mouvement, comme dans le cas d’un champs
magnétique, il n’y a presque aucune correction relativiste à faire : nous avons simplement
F⃗ = mγa⃗, où le γa⃗ vient du fait que la vitesse relativiste est γv⃗. C’est attendu, parce qu’une
force parallèle au mouvement ne change pas la vitesse de l’objet mais le fait simplement
tourner. Par contre, dans le cas d’une force parallèle au mouvement, il y a une large correction
quand la vitesse est grande : avec une force fixe, l’accélération décroît d’un facteur 1/γ2 de
plus que la normale, empêchant l’objet d’atteindre la vitesse de la lumière.
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Regardons maintenant la puissance P . Il existe usuellement deux manière de la calculer,
P = F⃗ · v⃗ ou P = dE

dt . Avec F⃗ = F⃗∥ + F⃗⊥ et en utilisant la première manière de calculer P , on
obtient facilement

P = F⃗∥ · v⃗ = mγ3(⃗a∥ · v⃗) = mγ3(⃗a · v⃗) (42)

De l’autre côté, en se rappelant que E = γmc2, on a

P = mc2
dγ
dt

= mγ3(⃗a · v⃗) (43)

Les deux manières de calculer la puissance aboutissent bien au même résultat.

Tout ce que nous avons fait jusque là dans cette section dépend du temps t, et nécessite
donc de se placer dans un référentiel fixe. Mais nous pouvons aussi tout faire en terme de
quadrivecteurs, pour pouvoir aisément changer de référentiel à l’aide des formules de la
section 3.2. Pour obtenir une une force qui se transforme bien sous les transformations de
Lorentz, nous pouvons dériver l’impulsion p⃗ par le temps propre de l’objet plutôt que par
un temps arbitraire. Dériver le quadrivecteur impulsion entier plutôt que de ne dériver que
sa composante spatiale donne alors un quadrivecteur, le quadrivecteur force. Avec p⃗ = γmv⃗
l’impulsion relativiste et F⃗ le vecteur force qui apparaît dans l’équation (37), nous avons

d
dτ

(E/c, px, py, pz) = γ
d
dt

(E/c, px, py, pz) = γ(P/c, Fx, Fy, Fz) (44)

Définition 8 : Quadrivecteur force

Le quadrivecteur force d’un objet subissant une force F⃗ d’une puissance P est
(γP/c, γFx, γFy, γFz)

Le quadrivecteur force ne change pas avec les translations, et se transforme comme les
autres quadrivecteurs sous les transformations de Lorentz.

Il est intéressant de noter que le quadrivecteur force est la dérivée temporelle du quadrivec-
teur impulsion, mais lui est orthogonal. En d’autres mots, l’accélération dans l’espace-temps
est toujours orthogonal à la direction du mouvement. Le quadrivecteur force courbe notre
trajectoire, mais ne peut pas modifier notre vitesse dans l’espace-temps. C’est logique puisque
notre vitesse dans l’espace-temps est fixe, c’est c.

Pour finir, nous pouvons changer le référentiel du quadrivecteur force pour voir quelle
forme il prend dans le référentiel propre, et comment l’objet ressent la force ou l’accélération.
Pour ce faire, il faut booster notre référentiel de la vitesse de l’objet v⃗ pour aller aussi vite que
lui. En décomposant la force en F⃗ = F⃗∥ + F⃗⊥, le quadrivecteur force se transforme comme

(γ
P

c
, γF⃗ ) −→ (γ2

P

c
− βF∥, γF⃗⊥ + γ2F⃗∥ − γ2

P v⃗

c2
) (45)

En notant F⃗0 = F⃗0,∥ + F⃗0,⊥ la force perçue par l’objet, on a donc

F⃗0,∥ = γ2F⃗∥ − γ2
P v⃗

c2
et F0,⊥ = γF⃗⊥ (46)

Pour une petite vitesse, nous avons γ proche de 1 et nous retrouvons bien F⃗0,∥ = F⃗∥ et F⃗0,⊥ = F⃗⊥.

L’équation (41) nous dit que a⃗∥ =
F⃗∥
γ3m

et que a⃗⊥ = F⃗⊥
γm tandis que a⃗0,∥ =

F⃗∥
m et a⃗0,⊥ = F⃗⊥

m

puisque l’objet a une vitesse nulle dans son référentiel propre. En insérant ces relations et en
utilisant l’équation (42) pour développer P , on voit a⃗0,∥ = γ3a⃗∥ et a⃗0,⊥ = γ2a⃗⊥. En d’autre termes,

a⃗0 = γ3a⃗∥ + γ2a⃗⊥ (47)
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Par rapport à ce que nous voyons, l’accélération ressentie par l’objet est plus forte d’un facteur
de Lorentz selon la direction de son mouvement que selon la direction perpendiculaire. C’est
l’inverse de l’effet que nous avons vu précédemment dans l’équation (41).
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