O Physicité IPhO : Relativité Restreinte

L’espace par lui-méme et le temps par lui-méme sont condamnés a s’effacer en de simples
ombres, et seule une sorte d’union des deux restera indépendante.
— Hermann Minkowski

1 Motivations historiques

La théorie de la relativité restreinte a été inventée par Mileva et Albert Einstein en 1905,
et elle a révolutionné la fagon dont nous comprenons le monde. Pourtant, la théorie repose
sur deux principes tres simples, formulés bien avant. Le premier est celui de la relativité,
inventé par Galilée en 1632. Le deuxieme est le principe selon lequel la vitesse de la lumiére
est constante, principe impliqué par la théorie de Maxwell inventée entre 1850 et 1870. Ces
deux principes, a premiéere vue contradictoires, peuvent étre naturellement unifiés en une
seule théorie : une théorie qui parle de la structure méme de ’espace-temps, la théorie de la
relativité restreinte.

1.1 La relativité de Galilée

Penchons nous d’abord sur la relativité de Galilée. Cette théorie nous dit que la physique
est partout la méme.

Si deux personnes sont d’un c6té ou de l'autre de la
Terre, ils pourront reproduire les mémes expériences
sans que rien ne change. Si nous somme dans un avion % t=0
et que nous renversons un verre d’eau, ’eau tombera .
de la mé&me maniére que si nous étions sur Terre a X —
’arrét. Supposons que nous sommes dans une piéce

. .
isolée, sans fenétre ni contact avec Uextérieur, mais v
avec tous les outils qu’on puisse imaginer pour faire = - t=1
nos expériences physiques. Alors Galilée nous dit qu’il L _
nous est impossible de savoir A
1. OU nous sommes
2. Dans quelle direction nous regardons g =2
3. A quelle vitesse nous allons .

De maniére plus concrete, si nous déplagons U'expé- .
rience en méme temps que le systéme de mesure uti- T ~
lisé pour mesurer les résultats de l’expérience, alors les
résultats resteront inchangés. Supposons par exemple
que U'expérience soit de lancer un stylo et de regarder a
quelle distance il atterrit. C’est 'expérience qu’illustre
la figure 1. Une premiere personne en jaune lance sim-
plement le stylo, depuis le point 0 et sans bouger. Une
deuxiéme personne en vert court a une vitesse v en

Figure 1 — Lancers de stylos dans dif-
férents référentiels
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lancant le stylo. Enfin, une troisieme personne en bleu s’avance d’une distance d avant de
lancer le stylo.

Du point de vue de la personne en jaune, tous les stylos atterrissent a une distance
différente. Il n’y a aucun lien entre les résultats des différentes expériences. Pourtant, chaque
personne mesure la méme distance entre elle et le stylo. C’est le principe de relativité de
Galilée : si nous changeons notre systéeme de mesure, ici U'endroit d’ot on mesure le stylo, de
la méme maniére que nous changeons l'expérience, ici la maniere dont nous langons le stylo,
alors le résultat ne changera pas.

Dans notre univers en 3 dimensions, un "systéme de mesure" correspond a un repere
(O,z,y,2) : z, y et z donnent les directions des axes, tandis que O donne lorigine, le point 0.
Déplacer le systeme de mesure correspond a changer O, tandis que le tourner correspond
a changer les axes z,y, z. Cependant, comme nous pouvons le voir avec la personne en vert
dans la figure 1, la dimension temporelle est aussi importante. Le repere utilisé peut changer
avec le temps. Notre "systeme de mesure" correspond donc a un référentiel R(x,y, z,t), c’est a
dire un ensemble de reperes qui peuvent changer avec le temps.

Tout objet? posséde un référentiel attaché, appelé le référentiel propre. Mon référentiel
propre est le référentiel d’ou je mesure a partir de moi. Dans mon référentiel propre, je suis
toujours a larrét. Je ne bouge jamais, vu que le référentiel bouge avec moi. De méme, tout
objet comme le stylo que nous avons lancé est immobile dans son référentiel propre. Lorsque
'on fait une expérience, il est donc souvent utile de fixer un référentiel extérieur, qui "ne
bouge pas". On appelle souvent ce référentiel le référentiel de l'observateur, en imaginant qu’il
y a un observateur assis dans la salle de 'expérience qui ne bouge pas.

Définition 1 : Référentiel inertiel

Un référentiel inertiel, aussi appelé référentiel galiléen, est un référentiel dans lequel les
lois de la physique sont les mémes que celles que 'on connalt. Plus rigoureusement,
c’est un référentiel dans lequel un objet isolé, soumis a aucune force, se déplace en
ligne droite a vitesse constante.

L’ensemble des référentiels inertiels sont obtenus en bougeant, en tournant d’un angle
fixe ou en donnant une vitesse constante a un référentiel inertiel d’origine : c’est la relativité
galiléenne. Cependant, tous les référentiels ne sont pas inertiels. Par exemple, un avion au
décollage n’est pas un référentiel inertiel, parce qu’il est en train d’accélérer. Le référentiel
propre d’un objet est inertiel quand l'objet est libre, quand il n’est affecté par aucune force
ou aucune action extérieure. Par exemple, l’avion au décollage se sert de ’air autour pour
accélérer, et son référentiel n’est donc pas inertiel. Par contre, en supposant que la Terre est
un référentiel inertiel, un avion allant a une vitesse constante a un référentiel propre qui est
aussi inertiel : 'avion utilise de I’énergie pour avancer, mais juste assez pour contrer les effets
de la friction avec l’air, de sorte a ce qu’au final il ait une vitesse constante.

En pratique, il est impossible d’obtenir un référentiel parfaitement inertiel. La Terre tourne
sur elle méme et autour du soleil, qui lui-méme gravite autour du centre de la galaxie. Mais de
maniere générale, on suppose quand méme que la Terre est un référentiel inertiel, comme
tout autre objet se déplagant a une vitesse constante sur sa surface.

1. En réalité, seules les objets possédants une masse strictement positive ont un référentiel propre. Pour avoir
un référentiel propre, il faut évoluer dans le temps, condition qui n’est pas respectée par les objets de masse nulle
voir négative, comme nous allons le voir.
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La relativité de Galilée nous dit que si changeons le référentiel de 'expérience en un autre
référentiel inertiel, mais que nous changeons notre référentiel de la méme maniére, alors les
résultats de ’expérience mesurés dans notre référentiel propre seront les mémes.

1.2 La vitesse de la lumiére

Si Uon prend naivement la relativité galiléenne, on s’apergoit vite que la vitesse de la
lumiéere est relative. Aprés tout, c’est une vitesse comme une autre. Si j’envoie un rayon de
lumiére dans une direction, je pourrais voir la lumiére aller a la vitesse vg. Mais si quelqu’un
d’autre court dans la méme direction que la lumiére a une vitesse ¢/, alors il verra depuis son
référentiel propre la vitesse aller a une vitesse vy — v'.

Pourtant, au milieu du XIX¢ siecle, Maxwell développe la théorie de ’électromagnétisme. Sa
théorie explique qu’un champ électrique dépend de la permittivité électrique de son milieu, ¢
dans le vide, et qu’un champ magnétique dépend de la perméabilité magnétique de son milieu,
1o dans le vide. Ce sont deux constantes de ’'Univers, qui gouvernent une force fondamentale
du monde tout comme la gravité. Selon Galilée, ces constantes ne doivent donc pas dépendre
du référentiel dans lequel elles sont mesurées.

La théorie de Maxwell explique aussi ce qu’est la lumiére : c’est la combinaison d’une onde
électrique et d’'une onde magnétique, qui se répondent mutuellement et se maintiennent en
vie Uune grace a l'autre. Ainsi, Maxwell prédit que dans le vide, la lumiere se déplace a une

vitesse
1

vV H0€0
En particulier, c’est une quantité qui ne dépend que de deux constantes, les mémes dans tout

référentiel. Donc la vitesse de la lumiere ne doit pas dépendre du référentiel dans lequel on
se trouve. Sa valeur est de

Q)

CcC =

c =299 792 458 m.s~! (2)

C’est d’ailleurs la constante qui définit la taille d’'un metre en fonction de la durée d’une
seconde. C’est donc une valeur exacte et non pas une approximation expérimentale. Mais pour

simplifier, nous retenons souvent que ¢~ 3 x 10° m.s™!.

Dans ce cas, est-ce que la relativité Galiléenne a tort? La formule de composition des
vitesses ne peut qu’étre fausse. Il est d’ailleurs assez arbitraire de dire que si un coureur allant
a une vitesse v’ voit un objet allant dans le méme sens que lui a une vitesse vy, alors il verra
'objet aller a une vitesse vy — v'. Par contre, le principe méme de relativité, le fait que les
lois de la physique ne change pas entre référentiels inertiels, peut étre gardé. C’est ce simple
principe, avec la constance de la vitesse de la lumiére, qui va nous en apprendre long sur la
structure de 'espace-temps.

2 Quelques expériences de pensée

2.1 De la lumiere dans un train

Faisons une expérience de pensée?. Imaginons que nous sommes dans un train en mouve-
ment, de vitesse v. Dans le train, nous disposons deux miroirs face a face a une distance d

2. Une expérience de pensée est une expérience qu’on imagine, et qui nous permet de comprendre le monde qui
nous entoure sans avoir besoin d’aucun outil. La théorie de la relativité restreinte a été intégralement développée
a laide d’expériences de pensée.
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l'un de lautre, un au sol et un au plafond. Puis nous envoyons un trait de lumiére sur 'un des
deux miroirs de sorte a ce que maintenant, la lumiere rebondissent infiniment entre les deux.

Vue du train
train
N4
— I
miroirs d
o
quai
Vue du quai )
train
N4
— 1 | \
miroirs d
o
quai

Figure 2 - Expérience des miroirs
dans le train

Imaginons aussi que nous avons un ami sur le quai, qui
regarde avec nous la lumiere rebondir entre les miroirs.
Le montage est représenté dans la figure 2.

De notre point de vue dans le train, le train semble
étre a l’arrét. Pour nous, c’est le quai qui bouge a une
vitesse v vers ’arriere. Entre chaque rebond, on voit
la lumiere parcourir une distance dy. Sachant que la
lumiere va a la vitesse ¢ peut importe le référentiel,
on voit donc la lumiere prendre un temps Aty = dy/c
entre chaque rebond. On marque chaque quantité d’un
indice 0, pour indiquer que c’est ce qui est pergu dans
le référentiel propre du train, ou U'expérience a lieu.

Maintenant, intéressons nous a ce qui est pergu
par notre ami sur le quai. Lui voit le train bouger et le
quai immobile. Ainsi, il voit aussi la lumiere avancer, et
suivre un zig-zag, comme dessiné figure 3. Aux yeux de
cet observateur, le train avance a une vitesse v. Si l'on
écrit At' le temps que la lumiéere prend entre chaque
rebond, alors les miroirs avancent d’une distance de
At'v entre chaque rebond. Ainsi, par le théoreme de
Pythagore, la distance que la lumiére doit parcourir
entre chaque rebond est

d = \/At202 + d3 (3)

La vitesse de la lumiére étant constante, on obtient

At? = (A*0? 4 d3) ) (4)

On note B2 v/c le rapport entre la vitesse du train et
la vitesse de la lumiere, et v, connu sous le nom du

facteur de Lorentz

a 1

V2

On reconnait aussi Aty = dy/c, ce qui nous donne

At = vAty

— h 4
At'v

(5)

Qo

v

(6) AR

C’est notre premiere observation des effets de la rela- Figure 3 — Mouvement de la lumiére
tivité restreinte! Comme v > 1, At’ est plus grand que gy point de vue du quai

Aty. Si A est en mouvement par rapport a B, alors B

verra le temps de A s’écouler plus lentement que A ne

le verra lui-méme.
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Propriété 1: Dilatation des durées

Supposons deux référentiels, 'un en mouvement de vitesse v par rapport a 'autre. Alors
le temps passé entre deux événements par le référentiel en mouvement est plus long
d’un facteur v, le facteur de Lorentz, s’il est mesuré par lautre référentiel que si il le
mesure lui-méme.

Il est intéressant de noter que pour atteindre ce résultat, nous avons supposé que nous et
notre ami mesurons la méme hauteur entre les deux miroirs, dy. Cette hypothése est légitime
parce que le mouvement du train est perpendiculaire a la hauteur entre les deux miroirs. Si
’'on se restreint juste a ’espace en une dimension qui sépare les deux miroirs, il n’y a aucun
mouvement. La mesure doit donc étre la méme pour nous deux.

La dilatation des durées nous dit que plus on va vite, plus notre temps passe lentement du
point de vue des autres et donc plus ils nous voient aller lentement. C’est une des raisons
pour lesquelles méme si 'on accélére constamment, personne ne nous verra jamais atteindre
la vitesse de la lumiére.

Prenons maintenant un point de vue neutre. Si deux personnes sont en mouvement l'une par
rapport a l'autre, alors chacune des personnes voit le temps de 'autre passer plus lentement
que l'autre ne le pergoit. A premiére vue, c’est un paradoxe. En réalité, cela exprime le fait que
les deux personnes sont dans l'impossibilité de synchroniser leurs horloges sans ralentir ou
accélérer : il n’existe plus de notion de simultanéité, le temps est relatif. Nous parlerons plus
de ces paradoxes dans quelques sections.

2.2 Autre expérience dans le train

On sait maintenant que le temps passe plus vite pour la personne dans le train que pour la

personne sur le quai, avec At' = vAty. Supposons maintenant que les deux personnes veulent

mesurer la longueur du train. Pour faire cette mesure,

elles marquent ¢, ’heure exacte a laquelle l’avant du

to train atteint le quai, et ¢; 'heure exacte a laquelle l'ar-

@ riere du train atteint le quai. L’expérience est illustrée
L

par la figure 4.

On a noté v la vitesse du train vu du quai. Mais v

t est en réalité une différence de vitesse entre le train
@ et le quai : du point de vue du train, c’est le quai qui
bouge, et nous n’avons en réalité aucun moyen de sa-

| qual voir lequel des deux bouge "vraiment". La notion de

mouvement n’existe que relativement a un référen-
tiel. Comme v n’est qu’une différence de vitesse, une
quantité relative, il n’y a aucune raison pour que cette
guantité mesurée depuis le train soit différente. C’est
donc aussi la vitesse du quai vu du train. En notant Aty
le temps mesuré depuis le train entre ¢, et ¢1, la personne dans le train obtient une longueur
de train

Figure 4 — Expérience pour mesurer
la longueur du train

Lo = vAty (7)

De la méme maniére, la personne sur le quai mesure un temps At' entre les deux instants,
et obtient
L' = vAt (8)
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On peut utiliser (6) pour lier At' et Aty. Cependant, il faut faire un peu attention aux mesures
effectuées et aux référentiels utilisés. Cette fois-ci, nous nous servons d’un point fixe dans le
référentiel du quai pour mesurer le temps qui passe. Autrement dit, ’expérience est congue
du point de vue du quai. Si 'on changeait de référentiel pour voir cette expérience du point de
vue du train, Uexpérience serait un peu différente. Comme le référentiel "par défaut" de cette
mesure de temps est le référentiel du quai, on a Aty = yAt'. On obtient alors

~

L (9)

On voit que la personne sur le quai voit le train plus court que la personne dans le train.
Plus généralement, si A est en mouvement par rapport a B, alors B verra les longueurs de A
plus courtes que A ne les verra lui-méme. Autrement dit, lorsque 'on est en mouvement par
rapport a une autre personne immobile, on voit les longueurs des objets restés immobiles
comme plus courtes.

Propriété 2 : Contraction des longueurs

Supposons deux référentiels, 'un en mouvement de vitesse v par rapport a l’autre. Alors
les longueurs dans le référentiel en mouvement sont plus courtes si elles sont mesurées
dans lautre référentiel que si elles sont mesurées dans leur référentiel propre, d’un
facteur 1/7.

Encore une fois, on voit que ’'Univers se déforme pour nous empécher d’atteindre la vitesse
de la lumiere : plus on va vite, plus les distances que l'on parcourt sur le monde resté immobile
sont mesurées comme petites et donc plus on a Ulimpression d’aller lentement.

Avec cette expérience, on voit aussi qu’il est parfois délicat de savoir qui est en mouvement
par rapport a qui, dans quel référentiel les mesures sont faites, et dans quel sens appliquer
les formules. Au cours de la section suivante, nous allons explorer la relativité restreinte d’une
maniére plus moderne et plus claire, pour lever tout doute.

3 L’espace-temps

3.1 Systéme de coordonnées

Comme la relativité restreinte lie '’espace avec le temps, par exemple en changeant notre
perception des distances en fonction d’un changement de vitesse, il est nécessaire de regarder
’espace et le temps ensemble. En mécanique classique, on regarde les coordonnées (z,y, 2)
d’un objet dans un espace en 3 dimensions en fonction du temps ¢. Par exemple, si on lance
un stylo en lair, on s’intéresse a une fonction comme z(t) = zp + vot — %tQ, ou z représente la
hauteur du stylo, comme illustré par la partie gauche de la figure 5. Mais si on prend en compte
la relativité restreinte, ce genre d’expression perd tout son sens parce que la notion méme
de temps dépend du référentiel. On préférerait donc regarder les coordonnées (¢, z,y, z) d’un
objet dans l'espace-temps en 4 dimensions, en fonction d’un parametre s. Dans le cas d’un
stylo lancé en l'air on, ne s’intéresserait alors plus a une fonction z(¢) mais a deux fonctions
z(s) et t(s), comme illustré par la partie droite de la figure 5.

Le probleme de s’intéresser a (t,z,y, z) est que ces coordonnées ne sont pas homogénes
dans leurs dimensions. t a une dimension temporelle, alors que les autres ont une dimension
spatiale. Pour lier les deux ensemble, il faut introduire une constante en [m.s~!] ou en [s.m™!],
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donc une vitesse ou son inverse.
La seule vitesse que l'on connait

——t=10 —_—
qui soit une constante de l’'Univers * P =3
est c. On considere donc les coor- \ s X
données (ct,z,y, 2). On pourrait tout ! =2
aussi bien considérer (t,x/c,y/c, z/c), :
mais c’est plus ennuyant a écrire. Voo i
Lorsque l'on fait de la physique rela-
tiviste a plus haut niveau, on consi- fa /
dere souvent ¢ = 1, que 'on obtient =t
en passant des metres et des se- /=0 /50
condes a d’autres unités, appellées t

unités naturelles. De cette fagon, on

peut a nouveau considérer les co- ) ) )

ordonnées (t,z,y, z), cette fois ci di- Figure 5 — Traject0|r§ d’un stylo en fonction du temps ¢
mensionnellement homogénes. on ©OU d’un autre parametre s

peut ensuite retrouver les valeurs

usuelles par analyse dimensionnelle.

Définition 2 : Quadrivecteur position

Un ensemble de coordonnées physiques? dans l'espace-temps s’appelle un quadri-
vecteur. (ct,z,y, z) est le quadrivecteur position, et indique la position d’un objet dans
'espace-temps, mesuré dans un certain référentiel.

a. par physiques, nous entendons qui se transforme de la méme maniére que le quadrivecteur position
sous les transformations du groupe de Lorentz, décrites dans la sous-section suivante.

Il est parfois ennuyant d’écrire (ct, z,y, z) pour nommer explicitement les différents compo-
sants d’un quadrivecteur. Dans le cas de coordonnées en 3 dimensions, il est courant de noter
p la position ou v la vitesse. On note alors les composants ' = (px, Py, P=) OU U = (U, Uy, Uz). Il
est alors facile d’étendre cette notation en notant par exemple P le quadrivecteur position,
et (Pu, Px, Py, P.) ses composants. De maniere plus moderne, nous avons tendance a ne pas
nommer les axes x,y,z explicitement, car ils peuvent facilement induire en erreur. Nous
pouvons simplement appeler ces axes 1,2, 3, et dénommer ’axe temporel 0. Nous notons alors
le quadrivecteur position X? avec i une variable allant de 0 a 3. X° dénote la position dans le
temps, tandis que (X!, X2, X3) dénote la position dans l'espace. Cependant, nous allons garder
autant que possible la notation (ct,z,y, z) au fil de ce cours pour étre le plus clair possible.

Retournons maintenant a ’évolution d’un objet. En évoluant avec le parameétre s, le
quadrivecteur position forme un chemin dans U'espace-temps, comme dessiné sur la figure
5. On appelle ce chemin la trajectoire de l'objet dans 'espace-temps. Il est important de
noter que s ne sert qu’a tracer la trajectoire de l'objet dans 'espace-temps, et n’a aucun sens
physique. Par exemple, si on lance le méme stylo en l'air que tout a ’heure, on peut avoir
z(s) = 29 + 2ups — 29t et ct(s) = 2cs. La fonction z(s) est un peu différente de celle que nous
avions précédemment. Mais en remarquant que ¢t = 2s, on voit que c’est en fait la méme chose
en fonction du temps.
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Définition 3 : Masse au repos

Un objet, ou plus concretement une masse?, est dit au repos dans un référentiel donné
si il ou elle est immobile. Autrement dit, un objet est au repos si sa trajectoire évolue le
long du temps et reste constante dans l’espace.

a. Comme nous allons le voir, un objet sans masse ou avec une masse négative ne peut pas étre au
repos.

On peut noter qu’un objet est toujours au repos dans son référentiel propre.

3.2 Les transformations de Lorentz

Avec ce systeme de coordonnées, nous sommes préts a retourner a la relativité galiléenne.
La relativité galiléenne dit que si 'on bouge d’une distance fixe, qu’on tourne d’un angle fixe
ou qu’on prend une vitesse constante, les lois de la physique restent les mémes. Regardons
comment ces changements de référentiels affectent le quadrivecteur position.

Tourner le référentiel est une opération connue sous le nom de rotation. Une rotation
dépend de deux parametres : 'axe de rotation O, et l’angle de rotation 6. L’axe de rotation peut
étre n’importe quelle direction spatiale, mais n’importe quelle rotation peut étre exprimée
comme une succession de rotations autours des axes O,, O, et O,. Pour cette raison, nous
allons seulement définir la rotation R,(f) autours de l’axe O,, la rotation R,(f) autours de l’axe
O,, et la rotation R, () autours de l'axe O,. Etant donné un quadrivecteur position (ct, ,v, 2),
nous avons®

ct ct
x x
1.(6) y | = | ycos(d) — zsin(6) (10)
z ysin(@) + z cos(6)
ct ct
Ry (0) ;1/; _ | wcos(0) ;— zsin(0) (1)
z —xsin(#) + z cos(0)
ct ct
x| | xcos(d) —ysin(f)
R.(0) y | | xsin(0) + ycos() (12)

Une deuxieme opération permettant de passer d’un référentiel inertiel a un autre est le
changement de vitesse, dénommée la boutée* en francais, mais plus souvent appelé le boost
par anglicisme ou parfois la "transformation spéciale de Lorentz". Le boost By est paramétrisée
par un vecteur spatial ¥ = (vg, vy, v,), la vitesse que 'on ajoute au référentiel. Mais un boost
de ¥ n’est que la succession d’un boost de v,y = (0, v,,0), d’'un boost de v,Z = (v,,0,0) et d’un
boost de v.7 = (0,0,v,). Pour cette raison, nous allons seulement définir les boosts B,z B,; et
B,> pour n’importe quel vitesse v. En utilisant la dilatation des durées et la contraction des

3. Nous notons ici les quadrivecteurs sous forme de colonne, autant pour la lisibilité que pour respecter les
conventions d’algebre linéaire.

4. Terme ancien remis au go(t du jour dans le contexte de la relativité par Thibault Damour. Historiguement,
c’est ce terme qui donne aujourd’hui des expressions comme bout-en-train.
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longueurs obtenues précédemment, on peut voir que le quadrivecteur position (ct, x,y, z) se
transforme comme

ct v (ct — Bx) ct v (et — By) ct v (ct — Bz)
x ~y(x — Bet) x x x x
By = . By - . By = 13
“ly y Yy Y(y — Bet) “ly y (%)
z z z z z ~v(z — Bet)

ou f=72%ety=1/y/1-p%sont les mémes que dans [’équation (6).

Ensemble, les rotations et les boosts forment le groupe de Lorentz, et sont appelées
transformations de Lorentz. C’est ’ensemble des transformations que l'on peut faire sans
changer les lois de la physique et sans changer Uorigine, le quadrivecteur (0,0,0,0).

Enfin, la derniére opération autorisée par la relativité galiléenne est celle qui bouge le
référentiel, appelée translation. Une translation T, est paramétrisée par un autre quadrivecteur
a = (et, g, 0y, ;). Elle agit sur un quadrivecteur (ct,z,y, z) par

ct ct + et
T T+ oy
T = 14
o (14)
z z+ oy

Combiner une translation avec une transformation du groupe de Lorentz, donc une somme
de boosts et de rotations, forme une transformation du groupe de Poincaré. Avec ces trans-
formations, il est toujours possible d’aller d’un référentiel inertiel a un autre, et on peut
donc toujours ramener tout un probléeme dans un seul référentiel pour ne pas se tromper de
mesures.

3.3 Notre Univers

En voyant toutes les différentes manieres de transformer les coordonnées, on peut se
demander si il reste quelque chose de stable, qui ne change pas avec les transformations de
Lorentz ou les translations. Il se trouve que pour un quadrivecteur (ct, z,y, z), la quantité

2 =2t —? — y2 — 22 (15)

ne change jamais. On peut appliquer ga pour trouver une quantité invariantes entre deux
points de l’espace-temps.

Définition 4 : Intervalle de Lorentz

Etant donné deux coordonnées dans 'espace-temps (ct, z,y, z) et (ct’,2’,y/, 2'), Uintervalle
de Lorentz As est définie par

AL EPE -t —(z-2)P-(y—y)’ - (2-2)° (16)
L’intervalle de Lorentz est la méme dans tous les référentiels inertiels.

On peut comprendre la quantité s associée a un quadrivecteur comme une sorte de longueur
de ce quadrivecteur, appelée norme du quadrivecteur, et U'intervalle de Lorentz entre deux
points de l’espace-temps comme une sorte de distance entre ces deux points. Ce n’est pas une
vraie notion de distance, puisque Uintervalle de Lorentz entre deux points de l'espace-temps
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peut étre négative, et puisque le fait que deux points soient a une distance 0 l'un de l'autre
ne veut pas dire qu’ils sont au méme endroit. Malgré tout, nous pouvons définir une notion
de géomeétrie dans l'espace-temps grace a cette espéce de distance. Cet espace-temps ou la
distance est donné par lintervalle de Lorentz est appelé 'espace de Minkowski.

Par définition, les transformations du groupe de Poincaré sont des isométries de cet espace,
c’est a dire qu’elles ne changent pas les distances. On peut les comprendre comme des
symétries de 'espace, une maniere de définir ’lhomogénéité de l'espace. Ce sont d’ailleurs les

seules isométries de ’'espace.

y

Figure 6 — Exemple d’isométrie en 2
dimensions

Comparons a l'univers dont nous avons ’habitude.
Dans notre espace usuel, les seules isométries qui
existent sont les rotations et les translations. Une iso-
métrie générale en 2 dimensions est représentée dans
la figure 6. Le fait que les translations soient des iso-
métries signifie que l’espace est en tout point le méme,
tandis que le fait que les rotations soient des isomé-
tries signifie que l'espace est isotrope, qu’il n’existe
pas de différence entre les différentes directions. Dans
un espace de 3 dimensions homogene et isotrope, il est
naturel de s’attendre a ce que tout fonctionne pareil si
on bouge ou on tourne, car cela ne change pas l'Univers.
De méme, en partant du principe que nous vivons dans
’Univers de Minkowski, il est naturel de s’attendre a

ce que les transformations de Lorentz et les translations ne changent pas la physique : ce

sont les symétries de l’'Univers.

Par ailleurs, il est intéressant de noter qu’un espace

(ou espace-temps) de dimension n peut au maximum
avoir n(n + 1)/2 symétries indépendantes. En 4 dimen-
sions, pour les 4 dimensions de 'espace-temps, il peut
y avoir au maximum 10 symétries indépendantes. Les
transformations du groupe de Poincaré sont au nombre
de 4 pour les translations, 3 pour les boosts, et 3 pour
les rotations! Cela fait 10, indiquant que U'espace de
Minkowski possede le nombre de symétries maximum
et qu’il est impossible d’en avoir plus ®. Nous n’en avons
pas oublié.

Supposons que nous sommes a un point de les-
pace de Minkowski. Alors nous pouvons classifier les
autres points de l'espace en 3 catégories. Soit ils sont
a une distance 0 de nous, soit ils sont a une distance
positive de nous, soit ils sont a une distance négative
de nous. Comme changer de référentiel ne change pas
les distances, ces catégories sont valides peu importe

observateur. Ce sont des vérités universelles. La fi- Figure 7 — Diagramme de 'espace de
Minkowski

gure 7 montre a quoi ressemble 'Univers de Minkowski
divisé en ces 3 catégories. En rouge sont les points a
une distance négative de nous, en bleu sont les points

ailleurs

futur

ailleurs

espace

a une distance nulle de nous. Les points a une distance positive de nous sont encore divisés

5. A moins de passer a un super-espace, qui amene a la supersymétrie
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en 2 catégories : en vert ceux qui ont un temps plus grand que nous, et en jaune ceux qui ont
un temps plus petit que nous. Puisque la notion d’intervalle de Lorentz est constante a travers
les changements de référentiels, il en va de méme de leurs signes : les catégories que nous
venons de définir sont universelles et ne dépendent pas du point de vue.

Supposons que nous voulions atteindre un objet situé sur un point a une distance 0 de
nous. Alors le vecteur qui nous sépare prend la forme (ct, z,v, 2), tel que

A2 =2 4y + 22 (7)

Pour atteindre ce point, il faudrait aller a une vitesse v = d/t, avec d = /22 + y? + 22 par le
théoreme de Pythagore. Mais on a alors v = ¢, il faut aller a la vitesse de la lumiere pour
atteindre ces points. Les quadrivecteurs de norme nulle sont appelés vecteurs de genre
lumiere, parce que seule la lumiere peut se déplacer dans cette direction. Sur la figure 7, les
points en bleu sont donc tous les points atteints par une lumiére partant de nous et allant en
ligne droite.

Définition 5 : Cone lumiére

Les vecteurs de genre lumiere forment un céne, appelé le cdne lumiére. Ceux qui se
situent dans le futur, avec un temps positif, forment le cone de lumiere futur. Ce sont
les points que la lumiere pourra atteindre dans le futur en partant de 0. Les vecteurs de
genre lumiére avec un temps négatif forment quant a eux le cone de lumiére passé.

Si il faut aller a la vitesse de la lumiére pour atteindre les points bleus, alors il faut aller
encore plus vite pour atteindre les points rouges, qui constituent "’ailleurs”. Ce sont les points
qui nous sont inaccessibles, auxquels nous ne sommes jamais allés et auxquels nous ne
pourrons jamais allés. Une trop grande distance spatiale nous sépare, raison pour laquelle les
quadrivecteurs de norme négative sont appelés vecteurs de genre espace. Ces quadrivecteurs
nous indiquent dans quelle direction est le reste de l’espace, ce qui peut étre utile par exemple
aux confins d’un trou noir.

Enfin, les points en vert et jaunes sont les points qui peuvent avoir un lien causal avec
nous. Les points en vert ont un plus grand temps que nous, ce sont les points que nous
pouvons atteindre dans le futur et que nous pouvons influencer. Ils forment notre "futur".
Réciproquement, les points en jaune sont ceux d’ou nous pouvons venir, qui ont pu nous
influencer par le passé. Ils forment notre "passé". Ces vecteurs sont appelés des vecteurs
de genre temps. Il est important de noter que la notion de passé et de futur ne fait sens
qu’a lintérieur des cones lumiéres. Dans lailleurs, la notion de passé ou de futur dépend du
référentiel choisi.

Le fait que ces catégories soient universelles, peu importe le référentiel, signifie que la
causalité ne peut pas étre brisée. Un point inaccessible restera toujours un point inaccessible,
peu importe le point de vue, tandis qu’un point avec un lien causal pourra toujours avoir un
lien causal, peu importe le point de vue. Enfin, les vecteurs de genre lumiére restent toujours
de genre lumiére, montrant que la vitesse de la lumiere est constante.

3.4 Temps et paradoxes

Supposons que nous sommes a un point p; = (c¢t,z,y,z) de 'espace de Minkowski, et que
nous évoluons vers un autre point py = (ct’, 2,7/, 2'). A l’aide d’une translation, on peut amener
p1 a2 (0,0,0,0) puis a l’aide d’un boost, on peut amener py a (c7,0,0,0). Autrement dit, nous
pouvons changer de référentiel pour nous placer dans notre référentiel propre, dans lequel
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nous ne bougeons pas et ne faisons qu’évoluer dans le temps. T est alors le temps qu’il nous
faut pour aller de p; a ps, dans notre référentiel propre. Puisque lUintervalle de Lorentz entre
les deux points n’a pas changé, on a As = cr. La distance entre deux points est proportionnelle
au temps propre passé pour aller de 'un a l'autre.

De ce point de vue, nous pouvons réinterpréter 'espace de Minkowski. Les points qui sont
séparés de nous par un vecteur de genre temps sont des points que nous pouvons atteindre en
avangant dans le temps, ou qui peuvent nous atteindre en avancant dans le temps. C’est pour
Ga qu’ils sont liés a nous causalement. Si nous voulions atteindre la vitesse de la lumiere et
atteindre un point séparé de nous par un vecteur de genre lumiere, alors il nous faudrait arréter
notre temps. C’est impossible, et c’est pour ¢a que la vitesse de la lumiéere est inatteignable.
Pire encore, si nous voulions atteindre un point séparé de nous par un vecteur de genre espace,
alors il nous faudrait remonter notre temps.

Maintenant que nous savons lire le temps propre dans l’espace de Minkowski, nous pouvons
essayer de mieux comprendre ce que dit la relativité restreinte, et la dilatation du temps. Dans
la représentation de U'espace de la figure 7, une translation signifie un déplacement sur le
diagramme, tandis qu’une rotation est invisible car ’espace n’est représenté que dans une
seule direction. Un boost, quant a lui, penche le temps propre et l’espace propre du référentiel.

Supposons par exemple que nous avons une personne A en vert et une personne B en
rouge. Plagons nous dans le référentiel propre de A, et supposons que B se déplace a une
certaine vitesse par rapport a A. Dans son référentiel propre, B se déplace le long du temps, et
croit ne pas bouger. Mais du point de vue de A, B a une vitesse et donc se déplace avec le
temps, ce qui résulte visuellement en un temps penché. C’est ce qui est représenté dans la
figure 8, ou le diagramme est dessiné avec A et B au méme instant selon A.

On peut déja remarquer que A et B ont beau étre représentés au méme instant selon A, A
est dans le passé de B selon B. C’est un effet de la relativité du temps, et cela signifie que la
notion de simultanéité est perdue avec la relativité
restreinte. Seule la notion de causalité passée ou future
t lumiére 2 reste. Ici, A et B sont séparés par un vecteur de genre

oty espace, et ne sont donc pas liés causalement.

Alors pourquoi est-ce que le temps parait plus long
pour A que pour B? Pour voir cela, supposons que A

espace espace

rouge . #L et B avance un peu le long de leurs temps propres,
| espace c’est a dire gqu’ils continuent librement leur mouve-
8 ' a8 v, ment respectif sans force extérieure. Puis supposons

qu’apres un temps T mesuré par A, on arréte a nou-
veau le temps pour regarder ce qu’il s’est passé. Le
nouvel espace percu par A est représenté en pointillés
noirs sur la figure 8. A est maintenant a lintersection
f*::‘ug: entre son temps propre, dessiné en tirets verts, et le

! nouvel espace qu’il pergoit. Il s’est déplacé de T le long

du temps, et a mesuré un temps 7. B quant a lui est

maintenant a lintersection entre son temps propre,

dessiné en tirets rouges, et le nouvel espace. Comme

Figure 8 — Représentation d’un réfé- son axe du temps est penché du point de vue de 4, on
rentiel boosté vu depuis un autre peut voir que lintervalle de Lorentz entre sa nouvelle
position et son ancienne position est plus petite que A.
De maniéere générale, on peut voir dans [’équation (15)
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que plus un trait est penché dans le diagramme, plus sa norme est petite. C’est la dilatation
du temps

Un paradoxe connu de la relativité restreinte est
le paradoxe des jumeaux : imaginons deux jumeaux,
nés en méme temps sur Terre. L’un, dont la trajectoire temps T
est représentée en vert sur la figure 9, reste sur Terre. sur terre
L’autre, dont la trajectoire est représentée en rouge,
pars explorer 'espace avant de faire demi-tour pour
revenir sur Terre. Si l'on se place sur le référentiel de la
Terre, on peut imaginer que le jumeau dans la navette
spatiale va trés vite et ressent donc moins de temps
passer que son jumeau sur Terre. Quand le jumeau /
dans Uespace revient sur Terre, il devrait donc étre
beaucoup plus jeune que son jumeau resté sur Terre.
C’est ce qu’on voit sur la partie haute de la figure 9. T
La trajectoire rouge parcourt une distance beaucoup
plus petite que la trajectoire verte, avec les distances
de l'espace de Minkowski.

I'espace

Pourtant, si on se place dans le référentiel du ju-
meau qui part dans U'espace, on pourrait imaginer la
méme chose. De son point de vue, le jumeau sur Terre
part explorer ’espace avec la Terre, tandis que la na-
vette spatiale reste immobile. De ce point de vue L3,
c’est le jumeau parti dans Uespace qui devrait étre Figure 9 — Représentation du para-
plus vieux une fois de retour sur Terre. Alors, ou est doxe des jumeaux
le probleme? Si on essaye de changer le référentiel
de la partie haute de la figure 9, on obtient la figure
dessinée en dessous. En fait, si on veut se placer dans le référentiel de la navette spatiale, un
probléme se passe au moment ou elle fait demi-tour. Sur la figure, on voit que la trajectoire
verte se brise en deux. C’est parce que en réalité, il est impossible de changer de vitesse
instantanément comme ga. Changer de vitesse change la notion du temps, donc changer
instantanément de vitesse brise la ligne du temps. Pour faire demi-tour, il faut passer par
une phase d’accélération, qui rend le référentiel propre de la navette non-inertiel. C’est a ce
moment que se passe la physique intéressante, et que la symétrie entre les deux jumeaux est
brisée.

Finalement, c’est bien le jumeau resté sur terre qui vieillira le plus vite. C’est la conséquence
d’un fait plus général : le chemin le plus long entre deux points dans 'espace de Minkowski
est la ligne droite entre les deux. Aller d’un point A a un point B en suivant une ligne droite, a
vitesse constante, sans jamais accélérer ou décélérer, est le moyen le plus long de faire ce
trajet. Toute personne déviant du chemin en ligne droite et a vitesse constante arrivera a B
plus jeune que les personnes ayant suivi ce chemin.

4 Dynamique relativiste

4.1 Le quadrivecteur vitesse

Jusque la, nous n’avons vu qu’un seul type de quadrivecteur : le quadrivecteur position. Ce
quadrivecteur est pratique pour étudier et comparer des trajectoires dans 'espace-temps,
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mais il n’est souvent pas suffisant pour faire de la mécanique. Pour pouvoir avoir une chance
de faire de la mécanique Newtonienne, il nous fait définir une notion de vitesse dans l’espace-
temps de Minkowski. La vitesse est la dérivée de la position par le temps. Mais si le temps est
une notion relative au référentiel, on a aucune chance que le quadrivecteur vitesse obtenu se
transforme toujours d’une jolie maniere avec les transformations de Lorentz. La solution est
de dériver par rapport au temps propre.

On rappelle de l’équation (6) que si on voit un objet bouger alors a une vitesse v, alors
son temps propre est 1/~ fois plus petit que le notre. Autrement dit, dr = d¢/v. Donc si on
veut calculer la vitesse d’un objet dans son temps propre, de vitesse v = (v, vy, v;) dans notre
référentiel, on a

d d
E(Ctvxayaz) :’YE(Ct»xayaZ) :’y(cvvl‘vvyvvz) (18)
Définition 6 : Quadrivecteur vitesse

Le quadrivecteur vitesse d’un objet se déplagant a la vitesse v = (vg,vy,v,) est
(ve, Yvz, Yoy, YV2)-

A basse vitesse, § = 2 est proche de 0 donc le facteur de Lorentz v est proche de 1. Dans ce
cas, on retrouve l'expression usuelle de la vitesse. A basse vitesse, la composante temporelle
du quadrivecteur est juste constante égale a ¢ : c’est la vitesse a laquelle on se déplace dans
le temps. Si on calcule la norme du quadrivecteur vitesse, on obtient

2 2
=
s =~2(? —v?) = — s = 2 (19)

c2

En fait, ¢ n’est pas juste la vitesse de la lumiere : c’est la vitesse constante a laquelle toute
chose se déplace dans l'espace-temps. Nous, humains, nous déplagons lentement dans
’espace, et donc a une vitesse proche de ¢ dans le temps. La lumiére, quant a elle, ne se
déplace pas du tout dans le temps. Elle doit donc se déplacer a la vitesse ¢ dans l’espace.

Sous une translation, le quadrivecteur vitesse ne change pas. Mais sous une transformation
de Lorentz, le quadrivecteur vitesse se transforme comme le quadrivecteur position. Sous les
rotations R.(6), R,(0) et R.(0), le quadrivecteur vitesse (¢, yvz, yvy,7v;) se transforme comme

e c
Yz | _ Ve
R, (0) Yoy =7 Vy cos(#) — v sin(0) 2
Y. vy sin(f) + v, cos(6)
e N
g vy cos(0) + v, sin(0)
oo _ 21
L (0) o | =7 oy (21
v, — vy sin(f) + v, cos(6)
e ¢
yoe | vy cos(0) — vy sin(0)
Re0) | Sy | =7 | o sin®) + vy cos(®) .
YUz vz
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Sous les boosts Bz, B,y et Byz en notant ' =v'/c et v/ = 1/y/1 - f, il se transforme
comme

ve vy (c— B'vg) ye vy (¢ — Bluy) ye vy (e = B'vz)
YUz _ 7/’7(033 - 5/0) YUz _ YUz YUz _ YUz
Byz - ) Bv/gj - / _p , Bz -
YUy YUy YUy Y 'Y(vy B C) YUy YUy
Yz YV, YV, YU, v, vy (v = fc)
(23)

Il est intéressant de remarquer que lorsque l'objet et le référentiel ne bougent pas trop
vite, donc pour v et 4/ proches de 1, on retrouve immédiatement la formule de composition
des vitesses donnée par la relativité galiléenne, décrite dans la section 1.2.

4.2 Du mouvement dans le mouvement

En exploitant ’équation (23), il est possible de composer les vitesses en relativité restreinte,
et méme de corriger la formule de Ueffet Doppler. Les formules qui en sortent ne sont
cependant pas aussi jolies que ce qu’on a vu jusque la, et le calcul de Ueffet Doppler relativiste
demande de connalitre I’effet Doppler. Pour cette raison, le contenu de cette sous-section est
plus orienté pour les éleves de prépa, et n’est pas au programme des IPhOs pour les lycéens.

Supposons que nous avons un objet se déplacant a une vitesse v dans un référentiel en
mouvement par rapport a nous, de vitesse u. Pour passer du référentiel en mouvement au
notre, il faut booster le référentiel de —u. Par (23), on a la transformation

YU — ’VU’V—U(U - /B—uc) = ’Vv’vl (24)

ou v’ est la vitesse de 'objet mesurée dans notre référentiel. En développant les § et v dans
’égalité a droite et en passant au carré, on obtient

v'? _ (v +u)? (25)

2 2 2
- (1-%)(1-%)

En divisant par ¢? de chaque cbté et par ¢? le nominateur et le dénominateur de la partie de
droite, puis en multipliant de chaque cété par (c? — v?) et en regroupant les termes en v'?, on a

P 02(11 + u)2 B 04(11 + u)2
1’O+@wa§—mo‘@hwm@—w>

(26)

Puis en isolant v"?, en simplifiant la fraction et en repassant a la racine, on obtient finalement

v+ U
v':1+% (27)
G

C’est la formule de composition des vitesses.

Qu’en est-il de l'effet Doppler? Supposons qu’une source émettent un signal a une
fréquence fjy, donc de longueur d’onde )\ = f—co On veut savoir quelle est la fréquence pergue
par un observateur s’éloignant a une vitesse v de la source, comme représenté sur la figure 10.
On se place dans le référentiel de la source.

On commence par chercher le temps qui s’écoule entre deux moments ou 'observateur
regoit un signal. Au moment ou l'observateur regoit un signal, le suivant est a une distance )\
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derriere. Si on commence un chrono a ce
moment et qu’on mesure la distance parcou-
rue par chacun, 'observateur parcourt une
distance vt tandis que le signal derriere par-
court une distance ct. Vu que le signal derriére
doit parcourir une distance de )\ de plus que —_—
'observateur pour le rattraper, on cherche
Uinstant ¢y tel que

Figure 10 — Situation pour U'effet Doppler
’Uto = Cto - /\0 (28) g P PP

Nous obtenons
to = Ao _ C _ 1
c—v  (c=v)fo (1-5)fo
Mais l'observateur va a une vitesse v, donc le temps qu’il pergoit ¢’ est dilaté d’un facteur
de Lorentz inverse. t' = ty/v. En notant f' =1/’ la fréquence pergue par l'observateur et en

remarquant que (1 — ?) = (1 — 8)(1 + ), nous obtenons

(29)

(1-5)
VI=-BVI+5

Cette derniére expression est la formule de l’effet Doppler relativiste.

1-p
1+

=70 -08)fo= fo= fo (30)

4.3 Masse et énergie

Maintenant qu’on a vu étudié la version relativiste de la vitesse, on souhaite s’attaquer a la
version relativiste de Uimpulsion p'= m, parfois appelée quantité de mouvement. On définit
le quadrivecteur impulsion comme m fois le quadrivecteur vitesse. Pour les composantes
spatiales, on obtient (ymuv.,ymuvy,,ymvy = yp. L'impulsion relativiste n’est rien de plus que
Uimpulsion classique multipliée par v, comme pour la vitesse. De l'autre c6té, la composante
temporelle est yme. C’est Uimpulsion de 'objet dans le temps. C’est en fait son énergie divisée
par ¢, E = ymc?.

Définition 7 : Quadrivecteur impulsion

Le quadrivecteur impulsion, aussi appelé quadrivecteur énergie-impulsion ou quadri-
vecteur moment, d’un objet d’énergie E et d’impulsion non-relativiste p = mv est

(E/e, YDz, YDy, YPz)-

Le quadrivecteur impulsion se transforme tout comme le quadrivecteur vitesse. La norme
du quadrivecteur impulsion est constant pour chaque objet, et ne dépend pas du référentiel :
c’est mc. Dans la physique moderne, c’est de cette maniére que nous définissons la masse. La
masse d’un objet est la norme de son quadrivecteur impulsion divisée par c.

Comme ’énergie d’un objet est son impulsion dans le temps, elle dépend du référentiel de
'observateur. On obtient grace a ce quadrivecteur une maniere générale pour calculer 'énergie
d’un objet

E? =m?ct + p202 (31
ou ici p est limpulsion relativiste, égale a ymwv. Dans le contexte des théories modernes
quantiques, cette équation s’appelle ’équation de Klein-Gordon, et c’est cette équation qui est
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utilisée pour comprendre le mouvement d’une certaine classe de particules appelés bosons,
dont le photon fait partie.

De cette équation, on voit que l’énergie d’un objet peut provenir de deux choses : sa masse
et sa vitesse. Un objet qui n’a pas de masse, comme un photon, est obligé d’avoir toute son
énergie dans la vitesse. C’est pour ¢ca que ces objets vont a la vitesse de la lumiéere. En réalité,
la lumiere n’est pas la seule a aller a cette vitesse. C’est le cas de tout objet sans masse.
D’un autre coOté, n'importe quel objet ayant une masse ne peut pas atteindre la vitesse de la
lumiére.

On peut appliquer l’équation (31) a un objet dans son référentiel propre, ou pour un objet
que lon voit a l’arrét, au repos. On obtient la fameuse équation d’Einstein

E = md? (32)

On peut aussi calculer Uimpulsion d’un photon, chose habituellement impossible d( a sa
masse nulle. Comme un photon a une masse nulle, la norme de son quadrivecteur est nulle
aussi. On a alors F = pc. Mais I’énergie d’un photon est donnée par la premiére relation de
Planck-Einstein £/ = hv, avec v = { la fréequence du photon. On obtient donc

p=" (33)

C’est la formule de De Broglie reliant Uimpulsion et la longueur d’onde d’un photon. Cette
formule est fondamentale en mécanique quantique car elle relie une quantité usuellement
associé a une particule, 'impulsion, a une quantité usuellement associé aux ondes, la longueur
d’onde.

Pour retrouver les formules de mécanique classique, on peut supposer étre a basse vitesse
et approximer ’équation (31) pour v proche de 1. On obtient

= mc” + fmv2 (34)

E =md*\/1
me +m202 2 m2c? 2

On reconnait ici 'énergie cinétique habituelle, en plus du terme donné par l’équation (32)
correspondant a ’énergie de l'objet au repos.

Qu’advient-il des lois de conservations? En mécanique classique, 'énergie et 'impulsion
totale d’un systeme fermé sont conservées. La relativité restreinte respecte toujours ce
principe, avec U’énergie et U'impulsion relativistes. Les deux lois de conservation peuvent étre
accumulées en un seul principe : la conservation du quadrivecteur impulsion total dans un
systéme fermé. Supposons que nous avons un systéme physique avec n objets, et notons P}
le quadrivecteur impulsion du k™€ objet. Alors le quadrivecteur impulsion total P}, défini par

n
Py => P (35)
=1

est toujours conservé dans un systeme fermé, pour chaque i. Pour i = 0 nous avons la
conservation de ’énergie relativiste tandis que pour i = 1,2,3 nous avons la conservation de
Uimpulsion relativiste.

Il est intéressant de noter que puisque le quadrivecteur impulsion total est conservé, sa
norme l'est aussi. C’est une constante qui ne change pas dans le temps, et qui ne change pas
en fonction du référentiel. C’est la masse totale invariante. Attention cependant, car la norme
de P} n’est pas égale a la somme des normes des P}. Cela veut dire que la masse n’est pas
toujours conservée.
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4.4 Force et puissance

Maintenant que nous avons a notre disposition une notion relativiste d’impulsion, nous
pouvons chercher a appliquer la premiere loi de Newton de maniere relativiste pour obtenir la
trajectoire d’objets subissant des forces. Cela demande cependant de bonnes connaissances
en mécanique, et le contenu de cette sous-section n’est donc pas au programme des IPhOs
pour les lycéens.

La premiére loi de Newton nous dit que pour un objet d’impulsion p subissant une force

externe F, nous avons

R
F= 4 (36)

En insérant U’expression de Uimpulsion relativiste, nous obtenons ’équation relativiste du
mouvement
= d(ymv)
F=""" 37
= (37)
Le temps t et la force F dépendent ici du référentiel, mais il est toujours possible de fixer
un référentiel pour faire tous les calculs. Nous avons vu précédemment que p = ymw. En notant
a g—”g, nous pouvons trouver
djs? v-d dvy JU-d
_9 ar _ sva 38
dt 2 at |2 (38)
En développant ’équation (37), nous avons
F = myi+my3 15 (39)
C

Le premier terme correspond a la partie classique de l’équation du mouvement, tandis
que le deuxieme est une correction ajoutée di aux effets relativistes. Nous pouvons déja
voir que c’est un terme qui va dans le méme sens que le mouvement de l'objet, et qui croit
trés vite avec 4. Ajouter un terme a F dans le sens de la vélocité revient a enlever un terme
a Laccélération d dans le sens de la vélocité. Autrement dit, la correction relativiste limite
'accélération dans la direction du mouvement, donc limite la maniére dont la force augmente
la vitesse de l'objet. Nous pouvons déja imaginer que ce terme est ce qui empéche un objet de
dépasser la vitesse de la lumiére. Pour mieux comprendre cet effet, nous pouvons diviser la
force F et 'accélération @ en deux parties : une partie paralléle au mouvement, ﬁ\l | et a, et

une partie orthogonale au mouvement, F'| et d,, de sorte a ce que nous ayons

—

FH'U:FHU, FL'UIO (40)

et de méme pour 'accélération. En injectant ces termes dans l’équation (39) et en simplifiant,
nous obtenons

7 .
aj == q =t (41)

¥°m ym

Dans le cas d’une force perpendiculaire au mouvement, comme dans le cas d’un champs
magneétique, il n’y a presque aucune correction relativiste a faire : nous avons simplement
F = m~d, ou le vd vient du fait que la vitesse relativiste est v#. C’est attendu, parce qu’une
force parallele au mouvement ne change pas la vitesse de l'objet mais le fait simplement
tourner. Par contre, dans le cas d’une force paralléle au mouvement, il y a une large correction
quand la vitesse est grande : avec une force fixe, 'accélération décroit d’un facteur 1/42 de

plus que la normale, empéchant l'objet d’atteindre la vitesse de la lumiere.
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Regardons maintenant la puissance P. Il existe usuellement deux maniere de la calculer,
P=F-UouP= %—f. Avec F' = F| + F| et en utilisant la premiére maniere de calculer P, on
obtient facilement

P = ﬁll U= m’y3(c_i|| 7)) = my3(@- v) (42)
De lautre coté, en se rappelant que E = ymc?, on a
d
P= mc2d—;§y = my3(a@ - 7) (43)

Les deux manieres de calculer la puissance aboutissent bien au méme résultat.

Tout ce que nous avons fait jusque la dans cette section dépend du temps t, et nécessite
donc de se placer dans un référentiel fixe. Mais nous pouvons aussi tout faire en terme de
quadrivecteurs, pour pouvoir aisément changer de référentiel a 'aide des formules de la
section 3.2. Pour obtenir une une force qui se transforme bien sous les transformations de
Lorentz, nous pouvons dériver 'impulsion p par le temps propre de l'objet plutét que par
un temps arbitraire. Dériver le quadrivecteur impulsion entier plutét que de ne dériver que
sa composante spatiale donne alors un quadrivecteur, le quadrivecteur force. Avec p'= ymv
limpulsion relativiste et F le vecteur force qui apparait dans ’équation (37), nous avons

d d
E(E/cvpfﬂvp;lﬁpz) = VE(E/Capmapyvpz) = ’Y(P/C7 ny Fy7 FZ) (44)
Définition 8 : Quadrivecteur force

Le quadrivecteur force d’un objet subissant une force F d’une puissance P est
(’YP/C>7an7Fy77Fz)

Le quadrivecteur force ne change pas avec les translations, et se transforme comme les
autres quadrivecteurs sous les transformations de Lorentz.

Il est intéressant de noter que le quadrivecteur force est la dérivée temporelle du quadrivec-
teur impulsion, mais lui est orthogonal. En d’autres mots, 'accélération dans 'espace-temps
est toujours orthogonal a la direction du mouvement. Le quadrivecteur force courbe notre
trajectoire, mais ne peut pas modifier notre vitesse dans l’espace-temps. C’est logique puisque
notre vitesse dans ’espace-temps est fixe, c’est c.

Pour finir, nous pouvons changer le référentiel du quadrivecteur force pour voir quelle
forme il prend dans le référentiel propre, et comment l'objet ressent la force ou l’accélération.
Pour ce faire, il faut booster notre référentiel de la vitesse de l'objet ¢ pour aller aussi vite que
lui. En décomposant la force en F = FII + FL, le quadrivecteur force se transforme comme

P - P - - Pv
(v VF) — (= = BF), vFL+°F) =7 —7) (45)
En notant Fy = Fo,u + qu,l la force pergue par l'objet, on a donc
_, _ Pv .,
Fo=7"Fj =+ et Fo=9F (46)

Pour une petite vitesse, nous avons ~ proche de 1 et nous retrouvons bien Fo=FyetFy L =F,.

. . F 7 . F 3
. - I - _ F — _ I — _F
L’équation (41) nous dit que @ = 7, et que da, = T;L tandis que dy | = - et dp = -
puisque 'objet a une vitesse nulle dans son référentiel propre. En insérant ces relations et en

utilisant ’équation (42) pour developper P, on voit dy || = 73&’“ et dp = ~%d,. En d’autre termes,

ap = 735“ + ’72(_ll (47)
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Par rapport a ce que nous voyons, 'accélération ressentie par 'objet est plus forte d’un facteur
de Lorentz selon la direction de son mouvement que selon la direction perpendiculaire. C’est
linverse de 'effet que nous avons vu précédemment dans ’équation (41).
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